Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (5): 655-666.DOI: 10.11755/j.issn.1006-7639-2025-05-0655
• Column on “California Wildfires and Drought” • Previous Articles Next Articles
YANG Yaoxian1,2(
), YAO Yubi1(
), YANG Rengui1, GAO Yubin1, ZHANG Weiwei1,6, DENG Mengyu3,4, XIAO Miaoyuan5
Received:2025-08-13
Revised:2025-09-08
Online:2025-10-31
Published:2025-11-09
杨耀先1,2(
), 姚玉璧1(
), 阳仁贵1, 高瑜昺1, 张伟伟1,6, 邓梦雨3,4, 肖淼元5
通讯作者:
姚玉璧
作者简介:杨耀先(1988—),男,甘肃武威人,博士,讲师,主要从事气候动力学与陆面过程研究。E-mail: yangyaox@lzre.edu.cn。
基金资助:CLC Number:
YANG Yaoxian, YAO Yubi, YANG Rengui, GAO Yubin, ZHANG Weiwei, DENG Mengyu, XIAO Miaoyuan. The impact of mid-latitude atmospheric circulation anomalies on wildfires caused by California drought in summer 2024[J]. Journal of Arid Meteorology, 2025, 43(5): 655-666.
杨耀先, 姚玉璧, 阳仁贵, 高瑜昺, 张伟伟, 邓梦雨, 肖淼元. 中纬度大气环流异常对2024年加州干旱引发山火的影响[J]. 干旱气象, 2025, 43(5): 655-666.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2025-05-0655
Fig.1 Spatial distribution of the mean fire weather index in the western United State in summer of 2024 (the area surrounded by red wire frame is the research area)
Fig.3 Spatial distribution of the mean fire weather index in the western United State on 15 June (a), from 1 to 11 July (b) and on 24 July (c) in 2024
Fig.5 Spatial distribution of standardized precipitation index in the western United States in summer of 2024 (a) and inter-annual variations of the regional mean standardized precipitation index in California in summer from 1980 to 2024 (b)
Fig.6 The daily time-longitude sections of transient asymmetric anomalous meridional wind at 200 hPa along 45.75°N in June (a) and July (b) of 2024 (Unit: m·s-1), daily variation of atmospheric long-wave index in summer 2024 (c), and inter-annual variation of atmospheric long-wave index from July 1 to 11 during 1980-2024 (d)
Fig.7 The averaged geopotential height perturbation field (the color shaded, Unit: gpm) and T-N wave activity fluxes (vectors, Unit: m2·s-2) at 200 hPa (a), geopotential height (the color shaded, Unit: gpm) and horizontal winds (vectors, Unit: m·s-1) perturbation field at 500 hPa (b), 500 hPa anomalous vertical velocity (the color shaded, Unit: 0.01 Pa·s-1) (c) and anomalous surface air temperature (green contour lines, Unit: K) and anomalous vapor pressure deficit field (the color shaded, Unit: hPa) (d) from 1 to 11 July 2024 (Yellow solid line and purple solid line represent 5 860 gpm feature line of geopotential height from1 to 11 July 2024 and climatology mean result, respectively)
Fig.8 The synoptic-scale transient asymmetric anomalous fields (a, d, g), original fields (b, e, h), and the sum of climatology mean and anomalous zonal mean fields (c, f, i) of geopotential height field (the color shaded, Unit: gpm) and horizontal winds field (vectors, Unit: m·s-1) at 500 hPa from 14 to 16 June 2024
Fig.9 The synoptic-scale transient asymmetric anomalous fields (a, d, g), original fields (b, e, h), and the sum of climatology mean and anomalous zonal mean fields (c, f, i) of geopotential height field (the color shaded, Unit: gpm) and horizontal winds field (vectors, Unit: m·s-1) at 500 hPa from 23 to 25 June 2024
Fig.10 The anomalous vertical velocity at 500 hPa (the color shaded, Unit: 0.01 Pa·s-1) (a, b), anomalous surface air temperature (the green contour lines, Unit: K) and anomalous vapor pressure deficit (the color shaded, Unit: hPa) (c, d) on 15 June (a, c) and 24 July (b, d) 2024
| [1] |
李春华, 朱飙, 杨金虎, 等, 2024. 我国干旱半干旱区近60 a气象干旱气候特征分析[J]. 干旱气象, 42(4):519-526.
DOI |
| [2] |
林纾, 李红英, 黄鹏程, 等, 2022. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 40(5):748-763.
DOI |
| [3] | 刘洋鹏, 罗斯生, 吴泽鹏, 等, 2025. 广东省森林火灾形势与应对措施探讨: 基于美国加州大火启示分析[J]. 森林防火, 43(3):64-67. |
| [4] | 钱维宏, 2012. 天气尺度瞬变扰动的物理分解原理[J]. 地球物理学报, 55(5):1 439-1 448. |
| [5] | 钱维宏, 单晓龙, 朱亚芬, 2012. 天气尺度扰动流场对区域暴雨的指示能力[J]. 地球物理学报, 55(5):1 513-1 522. |
| [6] | 钱维宏, 张宗婕, 2012. 西南区域持续性干旱事件的行星尺度和天气尺度扰动信号[J]. 地球物理学报, 55(5):1 462-1 471. |
| [7] | 田永丽, 王秋华, 2019. 气象条件异常对美国加利福尼亚州山火的影响[J]. 森林防火, 37(3): 21-25. |
| [8] |
颜鹏程, 李忆平, 曾鼎文, 等, 2024. 2024年4—6月我国区域性高温干旱特征及其影响因子[J]. 干旱气象, 42(4):507-518.
DOI |
| [9] | 张强, 黄建平, 杨金虎, 等, 2025. 中国干旱、半干旱区气候变化及影响研究百年进展[J]. 气象学报, 83(3):699-715. |
| [10] | 周扬, 李宁, 吉中会, 等, 2013. 基于SPI指数的1981—2010年内蒙古地区干旱时空分布特征[J]. 自然资源学报, 28(10):1 694-1 706. |
| [11] |
ABATZOGLOU J T, WILLIAMS A P, BARBERO R, 2019. Global emergence of anthropogenic climate change in fire weather indices[J]. Geophysical Research Letters, 46(1): 326-336.
DOI |
| [12] |
BOWRING S P K, JONES M W, CIAIS P, et al, 2022. Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system[J]. Nature Geoscience, 15,135-142.
DOI |
| [13] | CHIODI A M, POTTER B E, LARKIN N K, 2021. Multi-decadal change in western US nighttime vapor pressure deficit[J]. Geophysical Research Letters, 48(15): e2021GL092830. DOI:10.1029/2021GL092830. |
| [14] | DU L, LU R Y, 2021. Wave trains of 10-30-day meridional wind variations over the North Pacific during summer[J]. Journal of Climate, 34: 9 267-9 277. |
| [15] | DU L, LU R Y, 2022. Distinct intensity of 10-30-day intraseasonal waves over the North Pacific between early and late summers[J]. Atmospheric and Oceanic Science Letters, 15(4): 100204.DOI:10.1016/j.aosl.2022.100204. |
| [16] | GRILLAKIS M, VOULGARAKIS A, ROVITHAKIS A, et al, 2022. Climate drivers of global wildfire burned area[J]. Environmental Research Letters, 17(4): 045021. DOI:10.1088/1748-9326/ac5fa1. |
| [17] |
HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730):1 999-2 049.
DOI URL |
| [18] |
JAIN P, CASTELLANOS-ACUNA D, COOGAN S C P, et al, 2022. Observed increases in extreme fire weather driven by atmospheric humidity and temperature[J]. Nature Climate Change, 12(1): 63-70.
DOI |
| [19] |
JI F, WU Z H, HUANG J P, 2014. Evolution of land surface air temperature trend[J]. Nature Climate Change, 4(6):462-466.
DOI |
| [20] |
LUO B H, LUO D H, DAI A G, et al, 2024. Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires[J]. Nature Communications, 15: 5399. DOI:10.1038/s41467-024-49677-0.
PMID |
| [21] | LUO B H, XIAO C D, LUO D H, et al, 2025. Atmospheric and oceanic drivers behind the 2023 Canadian wildfires[J]. Communications Earth & Environment, 6: 446. DOI:10.1038/s43247-025-02387-x. |
| [22] |
MACK M C, BRET-HARTE M S, HOLLINGSWORTH T N, et al, 2011. Carbon loss from an unprecedented Arctic tundra wildfire[J]. Nature, 475(7357): 489-492.
DOI |
| [23] | PINTO M M, DACAMARA C C, HURDUC A, et al, 2020. Enhancing the fire weather index with atmospheric instability information[J]. Environmental Research Letters, 15(9): 0940b7. DOI:10.1088/1748-9326/ab9e22. |
| [24] |
SEDANO F, RANDERSON J T, 2014. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems[J]. Biogeosciences, 11(4): 3 739-3 755.
DOI URL |
| [25] | SENANDE-RIVERA M, INSUA-COSTA D, MIGUEZ-MACHO G, 2022. Spatial and temporal expansion of global wildland fire activity in response to climate change[J]. Nature Communications, 13: 1208.DOI:10.1038/s41467-022-28835-2. |
| [26] |
TAKAYA K, NAKAMURA H, 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. Journal of the Atmospheric Sciences, 58(6): 608-627.
DOI URL |
| [27] |
TRENBERTH K E, FASULLO J T, SHEPHERD T G, 2015. Attribution of climate extreme events[J]. Nature Climate Change, 5(8): 725-730.
DOI |
| [28] |
TURETSKY M R, BENSCOTER B, PAGE S S, et al, 2015. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 8(1): 11-14.
DOI |
| [29] | VITOLO C, DI GIUSEPPE F, KRZEMINSKI B, et al, 2019. A 1980-2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices[J]. Scientific Data, 6: 190032. DOI:10.1038/sdata.2019.32. |
| [30] |
WU Z H, HUANG N E, 2009. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1(1): 1-41.
DOI URL |
| [31] |
ZHENG B, CIAIS P, CHEVALLIER F, et al, 2023. Record-high CO2 emissions from boreal fires in 2021[J]. Science, 379(6635): 912-917.
DOI URL |
| [1] | YU Xiaojing, ZHANG Lixia, YU Zhixiang, YANG Ke’er. Attribution of drought-related meteorological conditions for the record-breaking wildfire event in Los Angeles in January 2025 [J]. Journal of Arid Meteorology, 2025, 43(5): 667-677. |
| [2] | ZHAO Cailing, YANG Jinhu, YUE Ping, YAN Pengcheng, LI Yiping, LI Hong, LI Danhua. The relationship between large-scale atmospheric circulations, extreme meteorological conditions, and the severe wildfire outbreak in California, USA during July 2024 [J]. Journal of Arid Meteorology, 2025, 43(5): 678-688. |
| [3] | ZHAO Sinan, ZHAO Haiyan, DAI Tanlong, LI Rui, SHAO Lifang, ZHANG Qiang. Influence of high temperature and drought on wildfires in California, USA [J]. Journal of Arid Meteorology, 2025, 43(5): 689-700. |
| [4] | LI Yijun. Estimation of drought resistance benefits of winter wheat under different drought years [J]. Journal of Arid Meteorology, 2025, 43(4): 555-562. |
| [5] | HE Huigen, ZHANG Chi, CHENG Qingyan, LI Yonghua, GAN Weiwei, JIN Yan. Analysis on differences of characteristics and atmospheric circulation causes of meteorological drought during summer in Sichuan-Chongqing region [J]. Journal of Arid Meteorology, 2025, 43(3): 355-365. |
| [6] | NIE Zhenling, WU Guoming, DONG Hangyu. Risk assessment of drought disasters on apple cultivation in Hebei Province [J]. Journal of Arid Meteorology, 2025, 43(3): 375-384. |
| [7] | SU Tianxin, MENG Xianhong, YANG Xianyu, AN Yingying, ZHAO Cailing. Drought evolution characteristics and vegetation response in the midwestern region of northwest China from 1963 to 2022 [J]. Journal of Arid Meteorology, 2025, 43(2): 163-175. |
| [8] | TANG Yurui, QI Yue, WANG Heling, YANG Yang, ZHAO Hong, ZHANG Kai, WEI Xingxing, WANG Renkui. Photosynthetic characteristics and response mechanism of spring maize at seven-leaf stage under drought stress [J]. Journal of Arid Meteorology, 2025, 43(2): 176-185. |
| [9] | LIU Yulian, LI Xiufen, KANG Hengyuan, SUN Shuang, YUAN Fang, ZHOU Heling, SHEN Yuezhao. Multi-scale drought spatiotemporal characteristics in Heilongjiang Province from 1961 to 2023 [J]. Journal of Arid Meteorology, 2025, 43(2): 186-194. |
| [10] | PAN Yongdi, XIAO Jingjing, PAN Yanhua, SHI Jie. A meteorological drought index based on cumulative precipitation and cumulative evaporation [J]. Journal of Arid Meteorology, 2025, 43(1): 1-10. |
| [11] | ZHOU Jianqin, LI Meng, TAO Yun, DOU Xiaodong, WANG Yuyouting. Study on the evolutionary characteristics of agricultural drought disasters and the relationship with climatic factors in Yunnan [J]. Journal of Arid Meteorology, 2025, 43(1): 21-31. |
| [12] | ZHANG Yucui, TAN Jianghong, YAN Caixia. Variability characteristics and risk assessment of regional high temperature, drought and their compound events in Hubei Province [J]. Journal of Arid Meteorology, 2024, 42(6): 825-835. |
| [13] | YANG Xiaoling, SUN Xuying, YANG Jinhu, WU Wen, ZHAO Huihua, CHEN Jing. Identification and evolution characteristics of compound high-temperature and drought events in the Shiyang River Basin [J]. Journal of Arid Meteorology, 2024, 42(6): 836-843. |
| [14] | REN Zhihan, NI Changjian, SHI Qiaoyu, CHEN Ning. Analysis of drought characteristics in Chengdu over the past 63 years based on the optimal probability distribution function [J]. Journal of Arid Meteorology, 2024, 42(6): 844-853. |
| [15] | XIE Ziyang, LI Changshun, CAI Jiayi, WANG Shanshan. Bibliometric analysis and visualization of the relationship between climate change and soil moisture from 1988 to 2023 [J]. Journal of Arid Meteorology, 2024, 42(6): 953-964. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com