Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (5): 667-677.DOI: 10.11755/j.issn.1006-7639-2025-05-0667
• Column on “California Wildfires and Drought” • Previous Articles Next Articles
YU Xiaojing1(
), ZHANG Lixia2(
), YU Zhixiang3, YANG Ke’er1
Received:2025-08-20
Revised:2025-09-18
Online:2025-10-31
Published:2025-11-09
通讯作者:
张丽霞
作者简介:于晓晶(1987—),女,山东烟台人,博士,副教授,主要从事干旱区气候变化与极端事件归因研究。E-mail: yuxj@xju.edu.cn。
基金资助:CLC Number:
YU Xiaojing, ZHANG Lixia, YU Zhixiang, YANG Ke’er. Attribution of drought-related meteorological conditions for the record-breaking wildfire event in Los Angeles in January 2025[J]. Journal of Arid Meteorology, 2025, 43(5): 667-677.
于晓晶, 张丽霞, 于志翔, 杨可儿. 2025年1月美国洛杉矶破纪录山火事件的干旱气象条件归因[J]. 干旱气象, 2025, 43(5): 667-677.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2025-05-0667
Fig.1 Spatial distribution of the topography of the western America (a, Unit: m) and IGBP land cover type (b) (The triangles denote the location of Los Angeles, the same as below ; The numbers for IGBP vegetation types in fig. b are as follows: 0 denotes water, 1 evergreen needleleaf forest, 2 evergreen broadleaf forest, 3 deciduous needleleaf forest, 4 deciduous broadleaf forest, 5 mixed forest, 6 closed shrubland, 7 open shrublands, 8 woody savannas, 9 savannas, 10 grasslands, 11 permanent wetlands, 12 croplands, 13 urban and built_up, 14 cropland natural vegetation mosaic, 15 snow and ice, 16 barren or sparsely vegetated, and 17 unclassified)
Fig.2 The climatological spatial distribution of precipitation (a, Unit: mm), VPD (b, Unit: kPa), GPP (c, Unit: gC·m-2) and FWI (d) in the western United States from July to December during 1981-2020
Fig.3 The daily variation of fire spot numbers and burned area (a), the distribution of fire spot grade (b), the daily variation of FWI in Los Angeles and its surrounding areas (c) and the spatial distribution of average FWI from 7 to 9 (d) during the January 2025 Los Angeles wildfires in USA
Fig.4 The monthly variations (a, b, c) and spatial distributions (d, e, f) of precipitation anomaly percentage (a, d) (Unit: %), VPD anomaly (b, e) (Unit: kPa) and FWI anomaly (c, f) in the western United States in 2024 (a, b, c) and from July to December 2024 (d, e, f) (The blue boxed area (25°N-38°N, 120°W-110°W) in Figure 4 (d), (e), and (f) serves as the value-extraction region for Figure 4 (a), (b), and (c), respectively, and the number denotes the average value of the blue boxed area)
Fig.5 Time series (a) and scatter plot (b) of standardized anomalies of precipitation, VPD and FWI area-averaged over the western United States (25°N-38°N, 120°W-110°W; the same as below) from July to December during 1981-2024
Fig.6 Standardized anomalies of observed and CAS-DASys simulated regional average precipitation (a) and VPD (b) in the western United States from July to December during 1980-2020 (The shading represents the spread among multi-members simulation results)
Fig.7 The scatter plot of standardized anomalies of precipitation and VPD in the western United States from July to December 2024 based on the CAS-DAsys large ensemble simulations
Fig.8 The probability density distribution of standardized anomalies of precipitation (a) and VPD (b) in the western United States from July to December 2024 based on the CAS-DAsys all-forcing and natural-forcing experiment simulations
Fig.9 The joint probability density distribution of standardized anomalies of precipitation (a) and VPD (b) in the western United States from July to December 2024 based on the CAS-DAsys all-forcing (a) and natural-forcing (b) experiment simulations
| [1] | 牛若芸, 翟盘茂, 佘万明, 2007. 森林火险气象指数的应用研究[J]. 应用气象学报, 18(4):479-489. |
| [2] | 牛若芸, 翟盘茂, 孙明华, 2006. 森林火险气象指数及其构建方法回顾[J]. 气象, 32(12):3-9. |
| [3] | 田永丽, 王秋华, 2019. 气象条件异常对美国加利福尼亚州山火的影响[J]. 森林防火(3):21-25. |
| [4] | 严中伟, 华丽娟, 钱诚, 等, 2024. 气候统计方法和应用[M]. 北京: 北京科学出版社:16-17. |
| [5] | 郑伟, 陈洁, 闫华, 等, 2020. FY-3D/MERSI-II全球火点监测产品及其应用[J]. 遥感学报, 24(5):521-530. |
| [6] | ABATZOGLOU J T, KOLDEN C A, CULLEN A C, et al, 2025. Climate change has increased the odds of extreme regional forest fire years globally[J]. Nature Communications, 16: 6390. DOI:10.1038/s41467-025-61608-1. |
| [7] | ABATZOGLOU J T, WILLIAMS A P, 2016. Impact of anthropogenic climate change on wildfire across western US forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(42): 11 770-11 775. |
| [8] | ALLEN R G, PEREIRA L S, RAES D, et al, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[M]. Rome: FAO: 300. |
| [9] | AYARS J, KRAMER H A, JONES G M, 2023. The 2020 to 2021 California megafires and their impacts on wildlife habitat[J]. Proceedings of the National Academy of Sciences of the United States of America, 120(48): e2312909120. DOI:10.1073/pnas.2312909120. |
| [10] | BOWMAN D M J S, KOLDEN C A, ABATZOGLOU J T, et al, 2020. Vegetation fires in the anthropocene[J]. Nature Reviews Earth & Environment, 1(10): 500-515. |
| [11] | BOWMAN D M J S, WILLIAMSON G J, ABATZOGLOU J T, et al, 2017. Human exposure and sensitivity to globally extreme wildfire events[J]. Nature Ecology & Evolution, 1: 58. DOI:10.1038/s41559-016-0058. |
| [12] |
BROWN P T, HANLEY H, MAHESH A, et al, 2023. Climate warming increases extreme daily wildfire growth risk in California[J]. Nature, 621(7980):760-766.
DOI |
| [13] | CHEN X D, LEUNG L R, DONG L, 2023. Antecedent hydrometeorological conditions of wildfire occurrence in the western U.S. in a changing climate[J]. Journal of Geophysical Research: Atmospheres, 128: e2023JD039136. DOI:10.1029/2023JD039136. |
| [14] | CUNNINGHAM C X, WILLIAMSON G J, BOWMAN D M J S, 2024. Increasing frequency and intensity of the most extreme wildfires on Earth[J]. Nature Ecology & Evolution, 8(8): 1 420-1 425. |
| [15] | DONG C Y, WILLIAMS A P, ABATZOGLOU J T, et al, 2022. The season for large fires in Southern California is projected to lengthen in a changing climate[J]. Communications Earth & Environment, 3:22. DOI:10.1038/s43247-022-00344-6. |
| [16] | DONG L, LEUNG L R, QIAN Y, et al, 2021. Meteorological environments associated with California wildfires and their potential roles in wildfire changes during 1984-2017[J]. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033180. DOI:10.1029/2020JD033180. |
| [17] | EFRON B, TIBSHIRANI R J, 1994. An introduction to the bootstrap[M]. New York: Chapman and Hall. |
| [18] |
EYRING V, BONY S, MEEHL G A, et al, 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 9(5): 1 937-1 958.
DOI URL |
| [19] | GINCHEVA A, PAUSAS J G, TORRES-VÁZQUEZ M Á, et al, 2024. The interannual variability of global burned area is mostly explained by climatic drivers[J]. Earth's Future, 12(7). DOI: 10.1029/2023EF004334. |
| [20] |
HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1 999-2 049.
DOI URL |
| [21] |
JAIN P, CASTELLANOS-ACUNA D, COOGAN S C P, et al, 2022. Observed increases in extreme fire weather driven by atmospheric humidity and temperature[J]. Nature Climate Change, 12(1): 63-70.
DOI |
| [22] |
JUNG M, KOIRALA S, WEBER U, et al, 2019. The FLUXCOM ensemble of global land-atmosphere energy fluxes[J]. Scientific Data, 6: 74. DOI:10.1038/s41597-019-0076-8.
PMID |
| [23] | LI L J, DONG L, XIE J B, et al, 2020. The GAMIL3: Model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 125(15): e2020JD032574. DOI:10.1029/2020JD032574. |
| [24] | LUKE R H, MCARTHUR A G, 1978. Bush Fires in Australia[R]. Canberra: Australian Government Publishing Service. |
| [25] | MADAKUMBURA G D, MORITZ M A, MCKINNON K A, et al, 2025. Anthropogenic warming drives earlier wildfire season onset in California[J]. Science Advances, 11(32): eadt2041. DOI:10.1126/sciadv.adt2041. |
| [26] |
MASS C F, OVENS D, 2019. The northern California wildfires of 8-9 October 2017: The role of a major downslope wind event[J]. Bulletin of the American Meteorological Society, 100(2): 235-256.
DOI URL |
| [27] | OSTOJA S M, CRIMMINS A R, BYRON R G, et al, 2023. Focus on western wildfires The Fifth National Climate Assessment[M]. Washington, District of Columbia: United States Government Publishing Office. |
| [28] | QIU M H, CHEN D Y, KELP M, et al, 2025. The rising threats of wildland-urban interface fires in the era of climate change: The Los Angeles 2025 fires[J]. Innovation, 6(5): 100835. DOI:10.1016/j.xinn.2025.100835. |
| [29] |
RADELOFF V C, MOCKRIN M H, HELMERS D, et al, 2023. Rising wildfire risk to houses in the United States, especially in grasslands and shrublands[J]. Science, 382(6671):702-707.
DOI PMID |
| [30] | RICHARDSON D, BLACK A S, IRVING D, et al, 2022. Global increase in wildfire potential from compound fire weather and drought[J]. NPJ Climate and Atmospheric Science, 5: 23. DOI:10.1038/s41612-022-00248-4. |
| [31] | STONE D A, CHRISTIDIS N, FOLLAND C, et al, 2019. Experiment design of the international CLIVAR C20C+ detection and attribution project[J]. Weather and Climate Extremes, 24:100206. DOI:10.1016/j.wace.2019.100206. |
| [32] | SWAIN D L, 2021. A shorter, sharper rainy season amplifies California wildfire risk[J]. Geophysical Research Letters, 48(5): e2021GL092843. DOI:10.1029/2021GL092843. |
| [33] | UNITED NATIONS ENVIRONMENT PROGRAM, 2022. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment[R]. Nairobi: UNEP. |
| [34] | VAN WAGNER C E, 1987. Development and structure of the Canadian Forest Fire Weather Index System[R]. Ottawa: Canadian Forestry Service. |
| [35] |
VITOLO C, DI GIUSEPPE F, BARNARD C, et al, 2020. ERA5-based global meteorological wildfire danger maps[J]. Scientific Data, 7(1): 216. DOI:10.1038/s41597-020-0554-z.
PMID |
| [36] |
WILLIAMS A P, ABATZOGLOU J T, GERSHUNOV A, et al, 2019. Observed impacts of anthropogenic climate change on wildfire in California[J]. Earth’s Future, 7(8):892-910.
DOI URL |
| [37] |
ZHANG L X, YU X J, ZHOU T J, et al, 2023. Understanding and attribution of extreme heat and drought events in 2022: Current situation and future challenges[J]. Advances in Atmospheric Sciences, 40(11):1 941-1 951.
DOI |
| [38] |
ZHANG L X, ZHOU T J, ZHANG X, et al, 2024. Attribution of the extreme 2022 summer drought along the Yangtze River valley in China based on detection and attribution system of Chinese academy of sciences[J]. Bulletin of the American Meteorological Society, 105(7): E1062-E1067.
DOI URL |
| [39] | ZHUANG Y Z, FU R, SANTER B D, et al, 2021. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 118(45): e2111875118. DOI:10.1073/pnas.2111875118. |
| [1] | ZHAO Cailing, YANG Jinhu, YUE Ping, YAN Pengcheng, LI Yiping, LI Hong, LI Danhua. The relationship between large-scale atmospheric circulations, extreme meteorological conditions, and the severe wildfire outbreak in California, USA during July 2024 [J]. Journal of Arid Meteorology, 2025, 43(5): 678-688. |
| [2] | ZHAO Sinan, ZHAO Haiyan, DAI Tanlong, LI Rui, SHAO Lifang, ZHANG Qiang. Influence of high temperature and drought on wildfires in California, USA [J]. Journal of Arid Meteorology, 2025, 43(5): 689-700. |
| [3] | ZHANG Feng, LI Yunpeng, LI Haiyan, SI Yaobin. Structural characteristics of a rainstorm cloud cluster over the Inner Mongolia section of the Yellow River Basin based on FY-3G satellite data [J]. Journal of Arid Meteorology, 2025, 43(5): 701-712. |
| [4] | WANG Xin, YANG Jinhu, WANG Pengling, HUANG Pengcheng, LU Guoyang, HU Jie. Spatial-temporal variation of extreme precipitation and its key influencing factors in Gansu Province over the past 62 years [J]. Journal of Arid Meteorology, 2025, 43(5): 745-758. |
| [5] | SU Xiaoxuan, YAN Qi, LU Jinglong, YU Yue, FANG Yihe, SUN Xiaolei. Spatio-temporal characteristics and circulation types of the regional high temperature processes in Liaoning during 1961-2023 [J]. Journal of Arid Meteorology, 2025, 43(4): 531-539. |
| [6] | LI Man, FANG Shibo, HAN Jiahao, ZHUO Wen, ZHANG Zhanhao, MA Yuping, WANG Bin, QI Yue, E Youhao, TAN Kaiyan, HE Di, ZHAO Huarong. Impact of climate warming on the three major grain crops in China [J]. Journal of Arid Meteorology, 2025, 43(4): 540-554. |
| [7] | ZHANG Li, SHEN Baizhu, LI Tianyu, JIN He, WANG Ling. Formation mechanism and impacts of low-temperature and spring flood events in Northeast China [J]. Journal of Arid Meteorology, 2025, 43(4): 586-594. |
| [8] | LI Zhehua, XIAO An, TU Manhong, WU Wenxin. Analysis of short-term heavy rainfall change trend and its causes in Jiangxi Province from April to September during 1979-2019 [J]. Journal of Arid Meteorology, 2025, 43(4): 595-606. |
| [9] | LIU Yulian, LI Xiufen, KANG Hengyuan, SUN Shuang, YUAN Fang, ZHOU Heling, SHEN Yuezhao. Multi-scale drought spatiotemporal characteristics in Heilongjiang Province from 1961 to 2023 [J]. Journal of Arid Meteorology, 2025, 43(2): 186-194. |
| [10] | QU Qiaona, WU Wei. Diurnal variation bias characteristics of precipitation forecast about various models under complex terrain in Taihang mountain and its east area [J]. Journal of Arid Meteorology, 2025, 43(2): 308-320. |
| [11] | YANG Bocheng, LI Weiguo, LIU Xiaoyun, DONG Shenghu, GUI Qiang, GAN Zeliang, ZHENG Qiong. Characteristics of summer compound dry hot events in the main confluence area of the upper Yellow River and their impact on runoff [J]. Journal of Arid Meteorology, 2025, 43(1): 11-20. |
| [12] | TENTINWOESER, DU Jun, HUANG Zhicheng, PASANG. Spatio-temporal variation of atmospheric vapor pressure deficit in Mt. Qomolangma region from 1981 to 2023 [J]. Journal of Arid Meteorology, 2024, 42(6): 878-888. |
| [13] | ZHANG Wen, WANG Dai, MA Yang, CUI Yang, KUAI Yixiong, HUANG Ying. Comparative analysis of temperature and precipitation variations in Ningxia between different climatological normal periods [J]. Journal of Arid Meteorology, 2024, 42(6): 889-899. |
| [14] | YIN Fei, BAI Bing, HUANG Pengcheng, MA Yulong. Impact of climate and human activities on NDVI change in Gansu section of the Yellow River main stream [J]. Journal of Arid Meteorology, 2024, 42(6): 934-943. |
| [15] | XIE Ziyang, LI Changshun, CAI Jiayi, WANG Shanshan. Bibliometric analysis and visualization of the relationship between climate change and soil moisture from 1988 to 2023 [J]. Journal of Arid Meteorology, 2024, 42(6): 953-964. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com