Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (5): 678-688.DOI: 10.11755/j.issn.1006-7639-2025-05-0678
• Column on “California Wildfires and Drought” • Previous Articles Next Articles
ZHAO Cailing1(
), YANG Jinhu1, YUE Ping1, YAN Pengcheng1(
), LI Yiping1, LI Hong1, LI Danhua2
Received:2025-01-16
Revised:2025-04-14
Online:2025-10-31
Published:2025-11-09
赵采玲1(
), 杨金虎1, 岳平1, 颜鹏程1(
), 李忆平1, 李红1, 李丹华2
通讯作者:
颜鹏程
作者简介:赵采玲(1989—),女,甘肃金昌人,副研究员,主要从事陆气相互作用研究。E-mail: zhaocl@iamcma.cn。
基金资助:CLC Number:
ZHAO Cailing, YANG Jinhu, YUE Ping, YAN Pengcheng, LI Yiping, LI Hong, LI Danhua. The relationship between large-scale atmospheric circulations, extreme meteorological conditions, and the severe wildfire outbreak in California, USA during July 2024[J]. Journal of Arid Meteorology, 2025, 43(5): 678-688.
赵采玲, 杨金虎, 岳平, 颜鹏程, 李忆平, 李红, 李丹华. 2024年7月美国加利福尼亚州山火与干旱和高温等极端气象条件的关系及大气环流成因[J]. 干旱气象, 2025, 43(5): 678-688.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2025-05-0678
Fig.2 The spatial distribution of differences between average geopotential height field (black contour lines, Unit: dagpm) and temperature field (red contour lines, Unit: ℃) at 500 hPa from June 29 to July 3 (a), July 4 to July 8 (b), July 9 to July 13 (c), July 14 to July 18 (d), July 19 to July 23 (e), 2024 and the climatological state from 1991 to 2020 (The solid lines denote positive anomalies, dashed lines denote negative anomalies)
Fig. 3 The spatial distribution of differences between the 700 hPa average specific humidity field (Unit: kg·kg-1) from June 29 to July 3 (a), July 4 to July 8 (b), July 9 to July 13 (c), July 14 to July 18 (d), July 19 to July 23 (e), 2024 and the climatological state from 1991 to 2020
Fig.4 The latitude-time sections of the average vertical wind fields (arrows, Unit: m·s-1), total horizontal wind speed (contours, Unit: m·s-1), and divergence (the color shaded, Unit: 10-6 s-1) from June 29 to July 3 (a), July 4 to July 8 (b), July 9 to July 13 (c), July 14 to July 18 (d), July 19 to July 23 (e), 2024
Fig.7 Daily variations of mean temperature, daily maximum temperature, relative humidity (a) and precipitation (b) in California, USA from April to October 2024
| [1] | 郝立生, 何丽烨, 马宁, 等, 2023. 厄尔尼诺事件年际变化与我国华北夏季干旱的关系[J]. 干旱气象, 41(6): 829-840. |
| [2] |
胡海清, 陆昕, 孙龙, 等, 2016. 气温和空气相对湿度对森林地表细小死可燃物平衡含水率和时滞的影响[J]. 植物生态学报, 40(3): 221-235.
DOI |
| [3] |
李忆平, 张金玉, 岳平, 等, 2022. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象, 40(5): 733-747.
DOI |
| [4] | 彭道福, 乐旭, 朱君, 等, 2023. 2019—2020年北极野火极端事件的气象成因解析[J]. 气候与环境研究, 28(2): 195-206. |
| [5] | 田永丽, 王秋华, 2019. 气象条件异常对美国加利福尼亚州山火的影响[J]. 森林防火(3): 21-25. |
| [6] | 王健疆, 马浩, 余丽萍, 等, 2021. 2019年浙江省秋旱大气环流特征分析[J]. 干旱气象, 39(1): 1-7. |
| [7] | 吴东佑, 2024. 气象条件对极端野火烟尘气溶胶的影响及反馈效应研究[D]. 兰州: 兰州大学. |
| [8] |
颜鹏程, 李忆平, 曾鼎文, 等, 2024. 2024年4—6月我国区域性高温干旱特征及其影响因子[J]. 干旱气象, 42(4): 507-518.
DOI |
| [9] | 周煜, 2022. 不同ENSO位相下亚马逊地区野火气溶胶气候效应的研究[D]. 南京: 南京信息工程大学. |
| [10] | DONG L, LEUNG L R, QIAN Y, et al, 2021. Meteorological environments associated with California wildfires and their potential roles in wildfire changes during 1984-2017[J]. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033180. DOI: 10.1029/2020JD033180. |
| [11] |
FREEBORN P H, JOLLY W M, COCHRANE M A, 2016. Impacts of changing fire weather conditions on reconstructed trends in U.S. wildland fire activity from 1979 to 2014[J]. Journal of Geophysical Research: Biogeosciences, 121(11): 2 856-2 876.
DOI URL |
| [12] | GALANIS M, RAO K, YAO X L, et al, 2021. DamageMap: A post-wildfire damaged buildings classifier[J]. International Journal of Disaster Risk Reduction, 65: 102540. DOI: 10.1016/j.ijdrr.2021.102540. |
| [13] |
GIRARDIN M P, WOTTON B M, 2009. Summer moisture and wildfire risks across Canada[J]. Journal of Applied Meteorology and Climatology, 48(3): 517-533.
DOI URL |
| [14] | GOSS M, SWAIN D L, ABATZOGLOU J T, et al, 2020. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California[J]. Environmental Research Letters, 15(9): 094016. DOI: 10.1088/1748-9326/ab83a7. |
| [15] |
GUMBER A, REID J S, HOLZ R E, et al, 2023. Assessment of severe aerosol events from NASA MODIS and VIIRS aerosol products for data assimilation and climate continuity[J]. Atmospheric Measurement Techniques, 16(10): 2 547-2 573.
DOI URL |
| [16] |
HE Q Q, ZHANG M, HUANG B, et al, 2017. MODIS 3 km and 10 km aerosol optical depth for China: Evaluation and comparison[J]. Atmospheric Environment, 153:150-162.
DOI URL |
| [17] | HERNANDEZ C, DROBINSKI P, TURQUETY S, 2015. Impact of wildfire-induced land cover modification on local meteorology: A sensitivity study of the 2003 wildfires in Portugal[J]. Atmospheric Research, 164: 49-64. |
| [18] |
HUANG B Y, THORNE P W, BANZON V F, et al, 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons[J]. Journal of Climate, 30(20): 8 179-8 205.
DOI URL |
| [19] |
JOLLY W M, COCHRANE M A, FREEBORN P H, et al, 2015. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 6: 7537. DOI: 10.1038/ncomms8537.
PMID |
| [20] |
KUWAYAMA Y, THOMPSON A, BERNKNOPF R, et al, 2019. Estimating the impact of drought on agriculture using the U.S. drought monitor[J]. American Journal of Agricultural Economics, 101(1): 193-210.
DOI URL |
| [21] | MARTIN J T, PEDERSON G T, WOODHOUSE C A, et al, 2020. Increased drought severity tracks warming in the United States' largest river basin[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(21): 11 328-11 336. |
| [22] |
MASS C F, OVENS D, 2019. The northern California wildfires of 8-9 October 2017: The role of a major downslope wind event[J]. Bulletin of the American Meteorological Society, 100(2): 235-256.
DOI URL |
| [23] | MORITZ M A, MORAIS M E, SUMMERELL L A, et al, 2005. Wildfires, complexity, and highly optimized tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 102(50): 17 912-17 917. |
| [24] |
MUÑOZ-SABATER J, DUTRA E, AGUSTÍ-PANAREDA A, et al, 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science, Data, 13(9): 4 349-4 383.
DOI URL |
| [25] |
PASCHALIDOU A K, KASSOMENOS P A, 2016. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology[J]. Science of The Total Environment, 539: 536-545.
DOI URL |
| [26] | PENG X B, YU M, CHEN H S, et al, 2023. Projections of wildfire risk and activities under 1.5 ℃ and 2.0 ℃ global warming scenarios[J]. Environmental Research Communications, 5(3): 031002. DOI: 10.1088/2515-7620/acbf13. |
| [27] |
POLLINA J B, COLLE B A, CHARNEY J J, 2013. Climatology and meteorological evolution of major wildfire events over the northeast United States[J]. Weather and Forecasting, 28: 175-193.
DOI URL |
| [28] | ROTHERMEL R C, 1972. A mathematical model for predicting fire spread in wildland fuels[R]. Forest Service Research Paper, INT-115. Ogden, UT: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station: 40 p. |
| [29] |
RUNNING S W, 2006. Is global warming causing more, larger wildfires?[J]. Science, 313(5789): 927-928.
DOI URL |
| [30] |
SMITH K H, TYRE A J, TANG Z H, et al, 2020. Calibrating human attention as indicator: Monitoring #drought in the twittersphere[J]. Bulletin of the American Meteorological Society, 101(10): E1801-E1819.
DOI URL |
| [31] |
THOMPSON J R, SPIES T A, 2009. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire[J]. Forest Ecology and Management, 258(7): 1 684-1 694.
DOI URL |
| [32] | VAN OLDENBORGH G J, KRIKKEN F, LEWIS S, et al, 2021. Attribution of the Australian bushfire risk to anthropogenic climate change[J]. Natural Hazards and Earth System Sciences, 21(3): 941-960. |
| [33] |
WILLIAMS A P, ABATZOGLOU J T, GERSHUNOV A, et al, 2019. Observed impacts of anthropogenic climate change on wildfire in California[J]. Earth’s Future, 7(8): 892-910.
DOI URL |
| [1] | HU Yuepeng, ZHAO Junping, LIU Hanhua, FU Yuan, SUN Shanlei, SONG Ziyi. Analysis on causes of extreme high temperature in Zhejiang Province during July-September in 2024 [J]. Journal of Arid Meteorology, 2025, 43(4): 499-509. |
| [2] | FU Yuan, LIU Hanhua, ZHOU Lingli, ZHAO Junping, MA Hao, LU Tingting, WEI Lei, XUAN Zhuolin. Comparative analysis of characteristics and causes of summer extreme high temperatures in Zhejiang in 2022 and 2013 [J]. Journal of Arid Meteorology, 2025, 43(1): 76-87. |
| [3] | ZHANG Yucui, TAN Jianghong, YAN Caixia. Variability characteristics and risk assessment of regional high temperature, drought and their compound events in Hubei Province [J]. Journal of Arid Meteorology, 2024, 42(6): 825-835. |
| [4] | LIU Wenying, SUN Suqin, ZHU Xingqiu, OUYANG Xinxin. Analysis and assessment of regional high temperature and drought processes in Jiangxi Province [J]. Journal of Arid Meteorology, 2024, 42(2): 187-196. |
| [5] | HAO Lisheng, HE Liye, MA Ning, HAO Yuqian. Relationship between interannual variability of El Niño events and summer droughts in North China [J]. Journal of Arid Meteorology, 2023, 41(6): 829-840. |
| [6] | DENG Xingchen, YU Tong, SHEN Jiayi, ZHAO Xin, WANG Lin, ZHENG Fei. Impact of the 2023/2024 El Niño event on drought in the Panama Canal region [J]. Journal of Arid Meteorology, 2023, 41(6): 841-848. |
| [7] | LUO Xiaoling, YANG Mei, ZHAO Huihua, LI Yanying, JIANG Jufang, FU Fenqi. Influence analysis of El Niño event on temperature, precipitation and meteorological drought in Wuwei, Gansu [J]. Journal of Arid Meteorology, 2023, 41(6): 849-859. |
| [8] | MA Siyuan, JIN Yan, ZHANG Si, WANG Chuqin, MA Zhimin. Different impacts of El Niño/Southern Oscillation events on autumn meteorological drought in Yunnan Province [J]. Journal of Arid Meteorology, 2023, 41(6): 860-872. |
| [9] | HE Huigen, ZHANG Chi, WU Yao, LI Yonghua, YANG Qin, MU Yujiao. Characteristics of high temperature and drought during summer in Chongqing and its response to La Niña event [J]. Journal of Arid Meteorology, 2023, 41(6): 873-883. |
| [10] | HAO Lisheng, MA Ning, HE Liye. Circulation anomalies characteritics of the abnormal drought and high temperature event in the middle and lower reaches of the Yangtze River in summer of 2022 [J]. Journal of Arid Meteorology, 2022, 40(5): 721-732. |
| [11] | LIN Shu, LI Hongying, HUANG Pengcheng, DUAN Xinyu. Characteristics of high temperature, drought and circulation situation in summer 2022 in China [J]. Journal of Arid Meteorology, 2022, 40(5): 748-763. |
| [12] | SUN Zhaoxuan, ZHANG Qiang, SUN Rui, DENG Biao. Characteristics of the extreme high temperature and drought and their main impacts in southwestern China of 2022 [J]. Journal of Arid Meteorology, 2022, 40(5): 764-770. |
| [13] | WANG Sheng, TIAN Hong, WU Rong, DING Xiaojun, XIE Wusan, DAI Juan, TANG Weian. Comprehensive assessment of regional high temperature and drought processes in Anhui Province in 2022 [J]. Journal of Arid Meteorology, 2022, 40(5): 771-779. |
| [14] | ZHANG Qiang. Scientific interpretation of severe drought in the Yangtze River Basin [J]. Journal of Arid Meteorology, 2022, 40(4): 545-548. |
| [15] | LAN Mingcai, ZHOU Li, JIANG Shuai, YIN Yiwen, XU Lin. Causes of a short-term heavy rainfall under the control of the western Pacific subtropical high in Hunan Province [J]. Journal of Arid Meteorology, 2022, 40(4): 656-666. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com