Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (6): 825-835.DOI: 10.11755/j.issn.1006-7639-2024-06-0825
• Articles • Previous Articles Next Articles
ZHANG Yucui(), TAN Jianghong(
), YAN Caixia
Received:
2024-09-14
Revised:
2024-11-22
Online:
2024-12-31
Published:
2025-01-15
通讯作者:
谭江红(1987—),男,湖北宜昌人,高级工程师,主要从事短期天气预报研究。E-mail:lzzhjw@163.com。
作者简介:
张玉翠(1985—),女,天津人,工程师,主要从事天气预报、气候变化与农业气象研究。E-mail:380323914@qq.com。
基金资助:
CLC Number:
ZHANG Yucui, TAN Jianghong, YAN Caixia. Variability characteristics and risk assessment of regional high temperature, drought and their compound events in Hubei Province[J]. Journal of Arid Meteorology, 2024, 42(6): 825-835.
张玉翠, 谭江红, 闫彩霞. 湖北省区域性高温、干旱及其复合事件变化特征及危险性评估[J]. 干旱气象, 2024, 42(6): 825-835.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2024-06-0825
j | Zk百分位数取值区间 |
---|---|
1 | ≥95% |
2 | [85%,95%) |
3 | [60%,85%) |
4 | <60% |
5 | 非高温日 |
Tab.1 Comprehensive strength grades of high temperature of each station
j | Zk百分位数取值区间 |
---|---|
1 | ≥95% |
2 | [85%,95%) |
3 | [60%,85%) |
4 | <60% |
5 | 非高温日 |
等级 | RS |
---|---|
特强 | 1≤RS<2 |
强 | 2≤RS<3 |
中等 | 3≤RS<4 |
弱 | RS≥4 |
Tab.2 Grades of regional high temperature events
等级 | RS |
---|---|
特强 | 1≤RS<2 |
强 | 2≤RS<3 |
中等 | 3≤RS<4 |
弱 | RS≥4 |
干旱强度等级 | MCI |
---|---|
无旱 | -0.5<MCI |
轻旱 | -1.0<MCI≤-0.5 |
中旱 | -1.5<MCI≤-1.0 |
重旱 | -2.0<MCI≤-1.5 |
特旱 | MCI≤-2.0 |
Tab.3 Strength grades of meteorological drought based on MCI
干旱强度等级 | MCI |
---|---|
无旱 | -0.5<MCI |
轻旱 | -1.0<MCI≤-0.5 |
中旱 | -1.5<MCI≤-1.0 |
重旱 | -2.0<MCI≤-1.5 |
特旱 | MCI≤-2.0 |
等级 | 强度(Zi) | Zi百分位数取值区间 |
---|---|---|
特强 | Zi≥16.59 | ≥95% |
强 | 10.22≤Zi<16.59 | [80%,95%) |
中等 | 6.26≤Zi<10.22 | [50%,80%) |
弱 | Zi<6.26 | Zi<50% |
Tab.4 Strength grades of regional drought events in Hubei Province
等级 | 强度(Zi) | Zi百分位数取值区间 |
---|---|---|
特强 | Zi≥16.59 | ≥95% |
强 | 10.22≤Zi<16.59 | [80%,95%) |
中等 | 6.26≤Zi<10.22 | [50%,80%) |
弱 | Zi<6.26 | Zi<50% |
[1] |
范进进, 秦鹏程, 史瑞琴, 等, 2022. 气候变化背景下湖北省高温干旱复合灾害变化特征[J]. 干旱气象, 40(5): 780-790.
DOI |
[2] | 高歌, 黄大鹏, 赵珊珊, 2019. 基于信息扩散方法的中国台风灾害年月尺度风险评估[J]. 气象, 45(11): 1 600-1 610 |
[3] | 高歌, 李莹, 陈涛, 等, 2023. 2004—2019年中国干旱多承灾体灾损风险特征评估[J]. 气象, 49(5): 611-623. |
[4] | 高洁, 肖红茹, 郭善云, 2023. 2022年夏季四川持续高温干旱特征及成因分析[J]. 沙漠与绿洲气象, 17(5): 118-126. |
[5] | 何慧根, 张驰, 吴遥, 等, 2023. 重庆夏季高温干旱特征及其对拉尼娜事件的响应[J]. 干旱气象, 41(6): 873-883. |
[6] | 姜颖迪, 王卫光, 魏佳, 等, 2022. 1961—2017年中国热浪特征及其对植被的影响[J]. 中国农村水利水电(3): 25-31. |
[7] | 姜雨彤, 侯爱中, 郝增超, 等, 2023a. 长江流域2022年高温干旱事件演变及历史对比[J]. 水力发电学报, 42(8): 1-9. |
[8] | 姜雨彤, 郝增超, 冯思芳, 等, 2023b. 长江与黄河流域复合高温干旱事件时空演变特征[J]. 水资源保护, 39(2): 70-77. |
[9] | 孔锋, 2020. 1961—2018年中国极端冷暖事件变化及其空间差异特征[J]. 水利水电技术, 51(9): 34-44. |
[10] | 李瑞英, 吕桂恒, 郝晓雷, 等, 2024. 鲁西南区域性高温干旱复合事件特征及危险性分析[J]. 中国农业气象, 45(6): 657-668. |
[11] | 李杨, 张雯, 陈云浩, 等, 2019. 基于自适应帕默尔指数的1961—2015年全国干旱时空特征分析[J]. 水利水电技术, 50(1): 43-51. |
[12] | 廖要明, 张存杰, 2017. 基于MCI的中国干旱时空分布及灾情变化特征[J]. 气象, 43(11): 1 402-1 409 |
[13] | 刘素英, 张伟, 曾佩生, 等, 2022. 基于MCI指数的宜宾市干旱时空变化特征[J]. 高原山地气象研究, 42(增刊2): 118-123. |
[14] |
刘文英, 孙素琴, 朱星球, 等, 2024. 江西省区域性高温和干旱过程分析与评估[J]. 干旱气象, 42(2): 187-196.
DOI |
[15] | 梅梅, 高歌, 李莹, 等, 2023. 1961—2022年长江流域高温干旱复合极端事件变化特征[J]. 人民长江, 54(2): 12-20. |
[16] | 钱潭锐, 逯家彤, 粟晓玲, 等, 2024. 基于复合事件指数的西北地区高温干旱复合事件风险评估[J]. 水资源与水工程学报, 35(1): 82-89. |
[17] | 全国气候与气候变化标准化技术委员会, 2017. 气象干旱等级:GB/T 20481—2017[S]. 北京: 中国标准出版社. |
[18] | 全国气候与气候变化标准化技术委员会, 2021. 区域性干旱过程监测评估方法:QX/T 597—2021[S]. 北京: 气象出版社. |
[19] | 全国气象防灾减灾标准化技术委员会, 2014. 区域性高温天气过程等级划分 QX/T 228—2014[S]. 北京: 气象出版社. |
[20] |
舒章康, 李文鑫, 张建云, 等, 2022. 中国极端降水和高温历史变化及未来趋势[J]. 中国工程科学, 24(5): 116-125.
DOI |
[21] | 孙蕊, 邓彪, 王顺久, 等, 2023. 2022年夏季四川省区域性高温和干旱过程监测评估[J]. 高原山地气象研究, 43(2): 72-80. |
[22] | 王昀, 王丽娟, 陆晓娟, 等, 2023. 2023年上半年我国干旱的特征及其成因分析[J]. 干旱气象, 41(6): 884-896. |
[23] | 武新英, 郝增超, 张璇, 等, 2021. 中国夏季复合高温干旱分布及变异趋势[J]. 水利水电技术:中英文, 52(12): 90-98. |
[24] | 徐慧, 江善虎, 任立良, 等, 2024. 气候变化背景下赣江流域复合高温干旱事件时空演变特征[J]. 水利水电技术:中英文, 55(4): 1-11. |
[25] | 许丹, 龙俐, 张东海, 等, 2023. 基于MCI干旱综合指数的贵州省干旱时空分布及灾情变化特征[J]. 干旱气象, 41(6): 897-909. |
[26] | 余荣, 翟盘茂, 2021. 关于复合型极端事件的新认识和启示[J]. 大气科学学报, 44(5): 645-649. |
[27] | 俞昕, 张琪, 杨再强, 2023. 基于Copula函数分析华北地区年高温干旱复合事件发生特征[J]. 中国农业气象, 44(8): 695-706. |
[28] |
张强, 2022. 科学解读“2022年长江流域重大干旱”[J]. 干旱气象, 40(4): 545-548.
DOI |
[29] | 张玮煊, 刁鹏, 巴音才次克, 等, 2023. 基于SPEI的开都河流域干旱时空演变特征分析[J]. 沙漠与绿洲气象, 17(6): 102-110. |
[30] | 中国气象局气候变化中心, 2024. 中国气候变化蓝皮书:2024[M]. 北京: 科学出版社. |
[31] | CHU Z, GUO J P, ZHAO J F, 2017. Impacts of future climate change on agroclimatic resources in Northeast China[J]. Journal of Geographical Sciences, 27(9): 1 044-1 058 |
[32] | FENG S F, HAO Z C, ZHANG X, et al, 2019. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields[J]. Science of the Total Environment, 689: 1 228-1 234 |
[33] | IPCC, 2022. Climate change 2021: The physical science basis[M]. Cambridge and New York: Cambridge University Press. |
[34] | MAZDIYASNI O, AGHAKOUCHAK A, 2015. Substantial increase in concurrent droughts and heatwaves in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(37): 11 484-11 489 |
[35] | MUKHERJEE S, MISHRA A K, 2021. Increase in compound drought and heatwaves in a warming world[J]. Geophysical Research Letters, 48(1): e2020GL090617. DOI: 10.1029/2020GL090617. |
[36] |
SHARMA S, MUJUMDAR P, 2017. Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India[J]. Scientific Reports, 7(1): 15582. DOI: 10.1038/s41598-017-15896-3.
PMID |
[37] | SHI Z T, JIA G S, ZHOU Y Y, et al, 2021. Amplified intensity and duration of heatwaves by concurrent droughts in China[J]. Atmospheric Research, 261: 105743. DOI: 10.1016/j.atmosres.2021.105743. |
[38] | SUZUKI N, RIVERO R M, SHULAEV V, et al, 2014. Abiotic and biotic stress combinations[J]. The New Phytologist, 203(1): 32-43. |
[39] | WANG R, LÜ G N, NING L, et al, 2021. Likelihood of compound dry and hot extremes increased with stronger dependence during warm seasons[J]. Atmospheric Research, 260: 105692. DOI: 10.1016/j.atmosres.2021.105692. |
[40] | YU R, ZHAI P M, 2020. Changes in compound drought and hot extreme events in summer over populated Eastern China[J]. Weather and Climate Extremes, 30: 100295. DOI: 10.1016/j.wace.2020.100295. |
[41] | ZHANG Y, HAO Z C, FENG S F, et al, 2022. Changes and driving factors of compound agricultural droughts and hot events in Eastern China[J]. Agricultural Water Management, 263: 107485. DOI: 10.1016/j.agwat.2022.107485. |
[42] | ZHOU P, LIU Z Y, 2018. Likelihood of concurrent climate extremes and variations over China[J]. Environmental Research Letters, 13(9): 094023. DOI: 10.1088/1748-9326/aade9e. |
[1] | WANG Yajun, LUO Juying, CHENG Liehai, LI Wei. Construction and validation of summer drought prediction model in Hubei Province based on machine learning algorithms [J]. Journal of Arid Meteorology, 2024, 42(5): 661-670. |
[2] | MU Jia, WU Di, LIU Yang, WANG Dongni, REN Jingquan. Analysis of influence of drought risk on maize yield in Jilin Province [J]. Journal of Arid Meteorology, 2024, 42(4): 498-506. |
[3] | ZHAO Wei, LIU Jianhong, WANG Kun, ZHANG Chaohua, CHE Jingjing, HAN Yinjuan. Construction of an integrated rainstorm hazard risk warning model in semi-arid areas and its application in Ningxia [J]. Journal of Arid Meteorology, 2024, 42(3): 458-464. |
[4] | ZHAO Xiaofang, FANG Sida, LEI Xiaomei, LIU Min, YU Xiao, XU Hui. The response of influenza-like illnesses to short-term weather variability intensity and risk early warning [J]. Journal of Arid Meteorology, 2023, 41(6): 952-960. |
[5] | WEI Huabing, CHEN Zhenghong, LUO Xiang, XIAO Yun, LUO Yu, ZHANG Peng. Refined division of ecological suitability of loquat planting in southeastern Hubei Province based on GIS [J]. Journal of Arid Meteorology, 2022, 40(5): 823-830. |
[6] | WANG Ying, ZHANG Qiang, WANG Jinsong, HAN Lanying, WANG Suping, ZHANG Liang, YAO Yubi, HAO Xiaocui, WANG Sheng. New progress and prospect of drought research since the 21st century [J]. Journal of Arid Meteorology, 2022, 40(4): 549-566. |
[7] | LE Zhangyan, SHI Minghua, LI De, HUO Zhiguo, DU Zixuan, TAN Yanjing. Risk assessment of low temperature disaster in winter for facility agriculture in Henan Province [J]. Journal of Arid Meteorology, 2022, 40(4): 667-676. |
[8] | LI Wanzhi, ZHANG Tiaofeng, MA Youxuan, FENG Xiaoli, YU Di, CHEN Jiqing. Drought Disaster Risk Regionalization in Qinghai Province Based on Disaster Risk Factors [J]. Journal of Arid Meteorology, 2021, 39(3): 480-485. |
[9] | WANG Xinzi, GUO Yong, ZHENG Jiangping, MA Pan, LIN Yingyi, YUE Man, WANG Shigong. Exploration of Climatotherapy Connotation Based on Migration of Longevous Siberian Crane and Its Enlightenment#br# [J]. Journal of Arid Meteorology, 2021, 39(2): 309-316. |
[10] | XU Jing, LIU Huayue, JIN Tiantian, SUN Ziyuan, FU Guiqin. Effect of Temperature on Children’s Respiratory Diseases in Qinhuangdao of Hebei Province [J]. Journal of Arid Meteorology, 2021, 39(2): 326-332. |
[11] | LI Wenhui, LIU Xin, WU Rang, ZHONG Yuanlong, MAI Yongrui, WANG Jun, HAN Binghong. Comprehensive risk regionalization of lightning disaster over Qinghai Province from 2010 to 2019 [J]. Journal of Arid Meteorology, 2021, 39(06): 1017-1024. |
[12] | DU Jianhua, ZHENG Honghui, MO Yunyin, YANG Qingwen, . Risk Prediction Method of Road Flooding and Blocking Events in Hainan Province [J]. Journal of Arid Meteorology, 2020, 38(6): 1031-1036. |
[13] | ZHANG Xiaopei, FAN Zhichao. Research on Safety Risk Assessment Method of Ground Weather Modification Operation Based on SCA-LEC Model [J]. Journal of Arid Meteorology, 2020, 38(6): 1037-1042. |
[14] | ZHANG Hongfang, LU Shan, SHEN Jiaojiao, ZHANG Xi, DANG Chaoqi. Temporal and Spatial Distribution Characteristics of Road Icing in Shaanxi and Its Risk Warning Model [J]. Journal of Arid Meteorology, 2020, 38(5): 878-885. |
[15] | DU Jianhua, ZHENG Honghui, ZHAO Lei, CHEN Ming. Analysis on Meteorological Disaster Risk of Highway Around Hainan Island Caused by Heavy Rainfall [J]. Journal of Arid Meteorology, 2020, 38(4): 683-688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com