Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (5): 689-700.DOI: 10.11755/j.issn.1006-7639-2025-05-0689
• Column on “California Wildfires and Drought” • Previous Articles Next Articles
ZHAO Sinan1(
), ZHAO Haiyan1,2(
), DAI Tanlong3, LI Rui4, SHAO Lifang5, ZHANG Qiang3
Received:2025-07-12
Revised:2025-08-20
Online:2025-10-31
Published:2025-11-09
赵斯楠1(
), 赵海燕1,2(
), 代潭龙3, 李睿4, 邵丽芳5, 张强3
通讯作者:
赵海燕
作者简介:赵斯楠(1998—),女,硕士,助理工程师,主要从事气候与气候变化相关研究。E-mail: 992059012@qq.com。
基金资助:CLC Number:
ZHAO Sinan, ZHAO Haiyan, DAI Tanlong, LI Rui, SHAO Lifang, ZHANG Qiang. Influence of high temperature and drought on wildfires in California, USA[J]. Journal of Arid Meteorology, 2025, 43(5): 689-700.
赵斯楠, 赵海燕, 代潭龙, 李睿, 邵丽芳, 张强. 高温和干旱对美国加利福尼亚州山火的影响[J]. 干旱气象, 2025, 43(5): 689-700.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2025-05-0689
Fig.2 The inter-annual variation of burned area and occurrence frequency of wildfires in California in different seasons from 1984 to 2023 (a) winter, (b) spring, (c) summer, (d) autumn
Fig.5 Relationship between maximum temperature and log10A in California in different seasons from 1984 to 2023 (a) winter, (b) spring, (c) summer, (d) autumn
Fig.10 The inter-annual variation of precipitation in California in different seasons from 1984 to 2023 (a) winter, (b) spring, (c) summer, (d) autumn
Fig.13 Relative importance of meteorological factors on burned area in California in different seasons from 1984 to 2023 based on random forest regression (a) winter, (b) spring, (c) summer, (d) autumn (Error bars denote the standard deviation of importance across 20 repeated runs, OOB R2 represents the coefficient of determination calculated using out-of-bag samples on unseen data)
| [1] | 杜建华, 宫殷婷, 蒋丽伟, 2019. 中国森林火灾发生特征及其与主要气候因子的关系研究[J]. 林业资源管理(2):7-14. |
| [2] | 高超, 林红蕾, 胡海清, 等, 2022. 基于气象因子的黑龙江黑河林火发生概率预测[J]. 森林与环境学报, 42(5):529-535. |
| [3] | 李丹, 杨丽萍, 贾成朕, 2021. 大兴安岭不同林型地表死可燃物含水率特征及其影响因子[J]. 干旱气象, 39(1):144-150. |
| [4] | 李明星, 丽娜, 那日苏, 等, 2025. 2001—2021年大兴安岭野火时空格局演变及影响因素分析[J]. 地理科学, 45(6):1 355-1 368. |
| [5] | 刘万, 林雪儿, 高峰, 等, 2018. 武夷山市林火时空格局及其与气象因子的关系[J]. 亚热带农业研究, 14(4):276-283. |
| [6] |
苏宏梅, 张楠, 冉新民, 等, 2024. 干旱半干旱区中小流域洪水机器学习预警模型及其应用[J]. 干旱气象, 42(5):683-693.
DOI |
| [7] |
王雅君, 罗菊英, 程烈海, 等, 2024. 基于机器学习的湖北省夏季干旱预测模型构建与检验[J]. 干旱气象, 42(5):661-670.
DOI |
| [8] | 魏凤英, 2007. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社. |
| [9] | ABATZOGLOU J T, BATTISTI D S, WILLIAMS A P, et al, 2021. Projected increases in western US forest fire despite growing fuel constraints[J]. Communications Earth & Environment, 2: 227. DOI: 10.1038/s43247-021-00299-0. |
| [10] | ABATZOGLOU J T, WILLIAMS A P, 2016. Impact of anthropogenic climate change on wildfire across western US forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(42): 11 770-11 775. |
| [11] | BREY S J, BARNES E A, PIERCE J R, et al, 2021. Past variance and future projections of the environmental conditions driving western U.S. summertime wildfire burn area[J]. Earth’s Future, 9(2): e2020EF001645. DOI: 10.1029/2020EF001645. |
| [12] |
DENNISON P E, BREWER S C, ARNOLD J D, et al, 2014. Large wildfire trends in the western United States, 1984-2011[J]. Geophysical Research Letters, 41(8): 2 928-2 933.
DOI URL |
| [13] | GOSS M, SWAIN D L, ABATZOGLOU J T, et al, 2020. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California[J]. Environmental Research Letters, 15(9): 094016. DOI: 10.1088/1748-9326/ab83a7. |
| [14] |
HIGUERA P E, ABATZOGLOU J T, 2021. Record-setting climate enabled the extraordinary 2020 fire season in the western United States[J]. Global Change Biology, 27(1):1-2.
DOI PMID |
| [15] | HOLDEN Z A, SWANSON A, LUCE C H, et al, 2018. Decreasing fire season precipitation increased recent western US forest wildfire activity[J]. Proceedings of the National Academy of Sciences, 115(36): E8349-E8357. |
| [16] | JUANG C S, WILLIAMS A P, ABATZOGLOU J T, et al, 2022. Rapid growth of large forest fires drives the exponential response of annual forest-fire area to aridity in the western United States[J]. Geophysical Research Letters, 49(5): e2021GL097131. DOI:10.1029/2021GL097131. |
| [17] | KEELEY J E, SYPHARD A D, 2016. Climate change and future fire regimes: Examples from California[J]. Geosciences, 6(3): 37. DOI: 10.3390/geosciences6030037. |
| [18] |
LITTELL J S, MCKENZIE D, PETERSON D L, et al, 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003[J]. Ecological Applications, 19(4): 1 003-1 021.
DOI URL |
| [19] | QIU M H, CHEN D Y, KELP M, et al, 2025. The rising threats of wildland-urban interface fires in the era of climate change: The Los Angeles 2025 fires[J]. The Innovation, 6(5): 100835. DOI:10.1016/j.xinn.2025.100835. |
| [20] |
SAFFORD H D, PAULSON A K, STEEL Z L, et al, 2022. The 2020 California fire season: A year like no other, a return to the past or a harbinger of the future?[J]. Global Ecology and Biogeography, 31(10): 2 005-2 025.
DOI URL |
| [21] |
SINGH D, TSIANG M, RAJARATNAM B, et al, 2014. Observed changes in extreme wet and dry spells during the south Asian summer monsoon season[J]. Nature Climate Change, 4(6): 456-461.
DOI |
| [22] | SWAIN D L, 2021. A shorter, sharper rainy season amplifies California wildfire risk[J]. Geophysical Research Letters, 48(5): e2021GL092843. DOI: 10.1029/2021GL092843. |
| [23] | TELESCA L, LASAPONARA R, 2025. Integrated investigation of the time dynamics of forest fire sequences in Basilicata Region (southern Italy)[J]. Applied Sciences, 15(14): 7974. DOI: 10.3390/app15147974. |
| [24] | WESTERLING A L, 2016. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1696): 20150178. DOI: 10.1098/rstb.2015.0178. |
| [25] |
WILLIAMS A P, ABATZOGLOU J T, GERSHUNOV A, et al, 2019. Observed impacts of anthropogenic climate change on wildfire in California[J]. Earth’s Future, 7(8):892-910.
DOI URL |
| [26] |
WILLIAMS A P, SEAGER R, ABATZOGLOU J T, et al, 2015. Contribution of anthropogenic warming to California drought during 2012-2014[J]. Geophysical Research Letters, 42(16): 6 819-6 828.
DOI URL |
| [1] | YANG Yaoxian, YAO Yubi, YANG Rengui, GAO Yubin, ZHANG Weiwei, DENG Mengyu, XIAO Miaoyuan. The impact of mid-latitude atmospheric circulation anomalies on wildfires caused by California drought in summer 2024 [J]. Journal of Arid Meteorology, 2025, 43(5): 655-666. |
| [2] | YU Xiaojing, ZHANG Lixia, YU Zhixiang, YANG Ke’er. Attribution of drought-related meteorological conditions for the record-breaking wildfire event in Los Angeles in January 2025 [J]. Journal of Arid Meteorology, 2025, 43(5): 667-677. |
| [3] | ZHAO Cailing, YANG Jinhu, YUE Ping, YAN Pengcheng, LI Yiping, LI Hong, LI Danhua. The relationship between large-scale atmospheric circulations, extreme meteorological conditions, and the severe wildfire outbreak in California, USA during July 2024 [J]. Journal of Arid Meteorology, 2025, 43(5): 678-688. |
| [4] | LI Yijun. Estimation of drought resistance benefits of winter wheat under different drought years [J]. Journal of Arid Meteorology, 2025, 43(4): 555-562. |
| [5] | HE Huigen, ZHANG Chi, CHENG Qingyan, LI Yonghua, GAN Weiwei, JIN Yan. Analysis on differences of characteristics and atmospheric circulation causes of meteorological drought during summer in Sichuan-Chongqing region [J]. Journal of Arid Meteorology, 2025, 43(3): 355-365. |
| [6] | NIE Zhenling, WU Guoming, DONG Hangyu. Risk assessment of drought disasters on apple cultivation in Hebei Province [J]. Journal of Arid Meteorology, 2025, 43(3): 375-384. |
| [7] | SU Tianxin, MENG Xianhong, YANG Xianyu, AN Yingying, ZHAO Cailing. Drought evolution characteristics and vegetation response in the midwestern region of northwest China from 1963 to 2022 [J]. Journal of Arid Meteorology, 2025, 43(2): 163-175. |
| [8] | TANG Yurui, QI Yue, WANG Heling, YANG Yang, ZHAO Hong, ZHANG Kai, WEI Xingxing, WANG Renkui. Photosynthetic characteristics and response mechanism of spring maize at seven-leaf stage under drought stress [J]. Journal of Arid Meteorology, 2025, 43(2): 176-185. |
| [9] | LIU Yulian, LI Xiufen, KANG Hengyuan, SUN Shuang, YUAN Fang, ZHOU Heling, SHEN Yuezhao. Multi-scale drought spatiotemporal characteristics in Heilongjiang Province from 1961 to 2023 [J]. Journal of Arid Meteorology, 2025, 43(2): 186-194. |
| [10] | PAN Yongdi, XIAO Jingjing, PAN Yanhua, SHI Jie. A meteorological drought index based on cumulative precipitation and cumulative evaporation [J]. Journal of Arid Meteorology, 2025, 43(1): 1-10. |
| [11] | ZHOU Jianqin, LI Meng, TAO Yun, DOU Xiaodong, WANG Yuyouting. Study on the evolutionary characteristics of agricultural drought disasters and the relationship with climatic factors in Yunnan [J]. Journal of Arid Meteorology, 2025, 43(1): 21-31. |
| [12] | XIE Yijun, HUANG Jumei, YANG Wei, HUANG Tianci, WU Hao, YUAN Quan. Variation characteristics of hourly wind speed at lakeside and lake-land breeze in Dongting Lake [J]. Journal of Arid Meteorology, 2025, 43(1): 54-63. |
| [13] | ZHANG Yucui, TAN Jianghong, YAN Caixia. Variability characteristics and risk assessment of regional high temperature, drought and their compound events in Hubei Province [J]. Journal of Arid Meteorology, 2024, 42(6): 825-835. |
| [14] | YANG Xiaoling, SUN Xuying, YANG Jinhu, WU Wen, ZHAO Huihua, CHEN Jing. Identification and evolution characteristics of compound high-temperature and drought events in the Shiyang River Basin [J]. Journal of Arid Meteorology, 2024, 42(6): 836-843. |
| [15] | REN Zhihan, NI Changjian, SHI Qiaoyu, CHEN Ning. Analysis of drought characteristics in Chengdu over the past 63 years based on the optimal probability distribution function [J]. Journal of Arid Meteorology, 2024, 42(6): 844-853. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com