[1] |
陈丽娟, 赵俊虎, 顾薇, 等, 2019. 汛期我国主要雨季进程成因及预测应用进展[J]. 应用气象学报, 30(4): 385-400.
|
[2] |
褚颖佳, 郭飞燕, 高帆, 等, 2023. 冷涡影响下两次不同类型强对流过程对比分析[J]. 干旱气象, 41(2) :279-289.
DOI
|
[3] |
崔恒立, 赵宇, 王东仙, 等, 2016. 引发暴雨的低涡发生发展机制分析[J]. 灾害学, 31(2): 30-36.
|
[4] |
邓承之, 赵宇, 孔凡铀, 等, 2021. “6·30”川渝特大暴雨过程中西南低涡发展机制模拟分析[J]. 高原气象, 40(1): 85-97.
DOI
|
[5] |
傅慎明, 赵思雄, 孙建华, 等, 2010. 一类低涡切变型华南前汛期致洪暴雨的分析研究[J]. 大气科学, 34(2): 235-252.
|
[6] |
高守亭, 1987. 流场配置及地形对西南低涡形成的动力作用[J]. 大气科学, 11(3): 263-271.
|
[7] |
何编, 孙照渤, 李忠贤, 2012. 一次华南持续性暴雨的动力诊断分析和数值模拟[J]. 大气科学学报, 35(4): 466-476.
|
[8] |
何光碧, 屠妮妮, 张利红, 2014. 一次低涡暴雨过程发生机制及其模式预报分析[J]. 暴雨灾害, 33(3): 239-246.
|
[9] |
何立富, 陈涛, 孔期, 2016. 华南暖区暴雨研究进展[J]. 应用气象学报, 27(5): 559-569.
|
[10] |
黄明策, 李江南, 农孟松, 等, 2010. 一次华南西部低涡切变特大暴雨的中尺度特征分析[J]. 气象学报, 68(5): 748-762.
|
[11] |
孔期, 符娇兰, 谌芸, 等, 2022. 河南“21·7”特大暴雨过程中尺度低空急流和低涡的演变特征及成因分析[J]. 气象, 48(12): 1 512-1 524.
|
[12] |
兰明才, 周莉, 蒋帅, 等, 2022. 西太平洋副热带高压控制下湖南一次短时强降水成因分析[J]. 干旱气象, 40(4): 656-666.
DOI
|
[13] |
刘国忠, 丁治英, 贾显锋, 等, 2007. 影响华南地区西南低涡及致洪低涡活动的统计研究[J]. 气象, 33(1): 45-50.
|
[14] |
刘祥, 王黎娟, 陈爽, 2017. 影响华南地区西南低涡的频数及移动特征分析[J]. 热带气象学报, 33(2): 250-258.
|
[15] |
卢萍, 李跃清, 郑伟鹏, 等, 2014. 影响华南持续性强降水的西南涡分析和数值模拟[J]. 高原气象, 33(6): 1 457-1 467.
|
[16] |
毛程燕, 马依依, 孙杭媛, 等, 2022. 不同路径移出型西南涡对中国中东部降水的影响[J]. 干旱气象, 40(3): 386-395.
DOI
|
[17] |
苗青, 白自斌, 王洪霞, 等, 2021. 山西秋季一次极端暴雨过程的异常特征分析[J]. 干旱气象, 39(6): 984-994.
|
[18] |
齐铎, 崔晓鹏, 邹强利, 2023. 2020年“6·26”冕宁致灾暴雨成因观测分析[J]. 大气科学, 47(2): 585-598.
|
[19] |
沈晓玲, 潘灵杰, 左骏, 等, 2022. 浙江西部梅汛期两次相似落区暴雨过程对比分析[J]. 干旱气象, 40(2): 244-255.
DOI
|
[20] |
覃皓, 伍丽泉, 何慧, 2022. 广西前汛期降水变化特征及其与东南太平洋海温变化的因果联系[J]. 热带气象学报, 38(2): 265-274.
|
[21] |
覃皓, 伍丽泉, 何慧, 2023. 夏季热带大西洋海温变化对华南前汛期降水的影响[J]. 大气科学, 47(5): 1 309-1 324.
|
[22] |
覃皓, 2023. 北太平洋海温与广西前汛期降水的联系[J]. 地球物理学报, 66(3): 905-919.
|
[23] |
杨秀梅, 孔祥伟, 王勇, 等, 2023. 一次干旱区极端暴雨天气的中尺度特征分析[J]. 高原气象, 42(4): 978-992.
DOI
|
[24] |
智协飞, 李佳, 张玲, 2022. 双低空急流影响下华南初夏降水日变化的时空分布特征[J]. 大气科学学报, 45(3): 444-455.
|
[25] |
BLACKADAR A K, 1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bulletin of the American Meteorological Society, 38 (5): 283-290. DOI:10.1175/1520-0477-38.5.283.
|
[26] |
CHEN G X, DU Y, WEN Z P, 2021. Seasonal, interannual and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective[J]. Journal of Climate, 34(11): 4 403-4 421. DOI:10.1175/JCLI-D-20-0882.1.
|
[27] |
DONG F, ZHI X F, ZHANG L, et al, 2021. Diurnal variations of coastal boundary layer jets over the Northern South China Sea and their impacts on diurnal cycle of rainfall over Southern China during the early-summer rainy season[J]. Monthly Weather Review, 149(10): 3 341-3 363. DOI:10.1175/MWR-D-20-0292.1.
|
[28] |
DU Y, CHEN G X, 2018. Heavy rainfall associated with double low-level jets over southern China. Part I: Ensemble-based analysis[J]. Monthly Weather Review, 146(11): 3 827-3 844. DOI:10.1175/MWR-D-18-0101.1.
|
[29] |
DU Y, CHEN G X, 2019. Heavy rainfall associated with double low-level jets over southern China. Part II: Convection initiation[J]. Monthly Weather Review, 147(2): 543-565. DOI:10.1175/MWR-D-18-0102.1.
|
[30] |
DU Y, ZHANG Q H, CHEN Y L, et al, 2014. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer[J]. Journal of Climate, 27(15): 5 747-5 767. DOI:10.1175/JCLI-D-13-00571.1.
|
[31] |
HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1 999-2 049. DOI:10.1002/qj.3803.
|
[32] |
HOLTON J R, 1967. The diurnal boundary layer wind oscillation above sloping terrain[J]. Tellus, 19A: 200-205. DOI:10.3402/tellusa.v19i2.9766.
|
[33] |
HUANG X G, ZHANG C, FEI J F, et al, 2022. Uplift mechanism of coastal extremely persistent heavy rainfall (EPHR): The key role of low-level jets and ageostrophic winds in the boundary layer[J]. Geophysical Research Letters, 49(8), e2021GL096029. DOI:10.1029/2021GL096029.
|
[34] |
PAN H, CHEN G X, 2019. Diurnal variations of precipitation over North China regulated by the mountain-plains solenoid and boundary-layer inertial oscillation[J]. Advances in Atmospheric Sciences, 36(8): 863-884. DOI:10.1007/s00376-019-8238-3.
|
[35] |
XUE M, LUO X, ZHU K F, et al, 2018. The controlling role of boundarylayer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China[J]. Journal of Geophysical Research: Atmospheres, 123(9): 5 090-5 115. DOI:10.1029/2018JD028368.
|
[36] |
ZENG W X, CHEN G X, DU Y, et al, 2019. Diurnal variations of low-level winds and rainfall response to large-scale circulations during a heavy rainfall event[J]. Monthly Weather Review, 147(11): 3 981-4 004. DOI:10.1175/MWR-D-19-0131.1.
|
[37] |
ZHANG Y C, SUN J H, 2017. Comparison of the diurnal variations of precipitation east of the Tibetan Plateau among subperiods of Meiyu season[J]. Meteorology and Atmospheric Physics, 129(5): 539-554. DOI:10.1007/s00703-016-0484-7.
|