干旱气象 ›› 2023, Vol. 41 ›› Issue (2): 187-206.DOI: 10.11755/j.issn.1006-7639(2023)-02-0187
赵鸿1,2(), 蔡迪花1,2, 王鹤龄1,2, 杨阳1,2, 王润元1,2(
), 张凯1,2, 齐月1,2, 赵福年1,2, 陈斐1,2, 岳平1,2, 王兴3, 姚玉璧4, 雷俊5, 魏星星1,2
收稿日期:
2023-01-10
修回日期:
2023-02-28
出版日期:
2023-04-30
发布日期:
2023-05-09
通讯作者:
王润元
作者简介:
赵鸿(1977—),女,甘肃临洮人,研究员,主要从事干旱气候变化影响适应与干旱监测研究。E-mail:zhaohonglt@126.com。
基金资助:
ZHAO Hong1,2(), CAI Dihua1,2, WANG Heling1,2, YANG Yang1,2, WANG Runyuan1,2(
), ZHANG Kai1,2, QI Yue1,2, ZHAO Funian1,2, CHEN Fei1,2, YUE Ping1,2, WANG Xing3, YAO Yubi4, LEI Jun5, WEI Xingxing1,2
Received:
2023-01-10
Revised:
2023-02-28
Online:
2023-04-30
Published:
2023-05-09
Contact:
WANG Runyuan
摘要:
干旱是当今世界出现频率最高、持续时间最长、危害范围最广的重大气象灾害,对全球农业、生态、社会发展和国民经济等影响巨大而广泛。农业旱灾是影响农业生产的重要因素,农业生产关乎着国家粮食安全。我国是一个农业大国,同时也是一个旱灾频发的国家,深入了解农业干旱灾害的成因、影响特征、旱灾强度、严重程度以及作物致灾的生理过程和机理等是提升农业干旱灾害监测预测预警水平、减轻和防御灾害损失、提高国家粮食安全生产需要解决的重要科学问题。本文综合回顾了国内外不同程度的农业干旱及其对粮食生产影响的最新研究进展,从农作物形态、生理、细胞和分子水平等方面探究了干旱影响特征及机制,围绕粮食生产如何有效应对农业干旱问题,评述了当前农业干旱监测的主要指标、方法、预警系统等,针对农业可持续发展和干旱新特征,讨论了当前防旱减灾和农业干旱应对的现状,强调了适应与减缓并举的一系列干旱应对措施,在此基础上结合国家、区域和行业发展需求提出了今后应着重加强的重要科学问题、研究对策及学科发展展望。
中图分类号:
赵鸿, 蔡迪花, 王鹤龄, 杨阳, 王润元, 张凯, 齐月, 赵福年, 陈斐, 岳平, 王兴, 姚玉璧, 雷俊, 魏星星. 干旱灾害对粮食安全的影响及其应对技术研究进展与展望[J]. 干旱气象, 2023, 41(2): 187-206.
ZHAO Hong, CAI Dihua, WANG Heling, YANG Yang, WANG Runyuan, ZHANG Kai, QI Yue, ZHAO Funian, CHEN Fei, YUE Ping, WANG Xing, YAO Yubi, LEI Jun, WEI Xingxing. Progress and prospect on impact of drought disaster on food security and its countermeasures[J]. Journal of Arid Meteorology, 2023, 41(2): 187-206.
图1 全球人口(a)、可耕地面积(b)和农业淡水需求量(c)的过去、现在和未来(Gupta et al.,2020)
Fig.1 Past, present, and future of world population (a), arable land (b) and freshwater demand in agriculture (c)(Gupta et al., 2020)
图3 2022年6月21日美国干旱状况(美国国家干旱监测网: http://droughtmonitor.unl.edu)
Fig.3 Drought situation in the United States on June 21,2022(National Drought Monitoring of United States from http://droughtmonitor.unl.edu)
图5 1949—2020年不同年代我国粮食因旱受灾率、成灾率和损失率与1949—1959年比值变化(倪深海等,2022)
Fig.5 Changes of the ratio of drought-affected rate and disaster-formative rate and loss rate due to drought in different decades in China during 1949-2020 compared with 1949-1959 (Ni et al., 2022)
图7 不同等级干旱对植物的影响机制及植物在形态、生理和分子水平上对干旱的响应
Fig.7 Effect mechanisms of drought with different grades on plants and responses of plant to drought at morphology, physiology and molecule levels
等级 | 类型 | 帕默尔指数 |
---|---|---|
1 | 无旱 | (-0.5,0.5] |
2 | 初旱 | (-1.0,-0.5] |
3 | 轻旱 | (-2.0,-1.0] |
4 | 中旱 | (-3.0,-2.0] |
5 | 重旱 | (-4.0,-3.0] |
6 | 特旱 | ≤-4.0 |
表1 帕尔默干旱指数等级划分
Tab.1 The grade classification of Palmer drought severity index
等级 | 类型 | 帕默尔指数 |
---|---|---|
1 | 无旱 | (-0.5,0.5] |
2 | 初旱 | (-1.0,-0.5] |
3 | 轻旱 | (-2.0,-1.0] |
4 | 中旱 | (-3.0,-2.0] |
5 | 重旱 | (-4.0,-3.0] |
6 | 特旱 | ≤-4.0 |
[1] | 白莉萍, 隋方功, 孙朝晖, 等, 2004. 土壤水分胁迫对玉米形态发育及产量的影响[J]. 生态学报, 24(7): 1 556-1 560. |
[2] | 鲍文中, 周广胜, 2017. 甘肃气象保障蓝皮书:甘肃农业对气候变化的适应与风险评估报告[M]. 北京: 社会科学文献出版社. |
[3] | 毕建杰, 刘建栋, 叶宝兴, 等, 2008. 干旱胁迫对夏玉米叶片光合及叶绿素荧光的影响[J]. 气象与环境科学, 31(1): 10-15. |
[4] | 陈德亮, 2012. 气候变化背景下中国重大农业气象灾害预测预警技术研究[J]. 科技导报, 30(19): 3. |
[5] | 陈滢, 2020. 新时代防汛防旱信息化能力提升思考[J]. 中国防汛抗旱, 30(12): 94-97. |
[6] | 邓振镛, 张宇飞, 刘德祥, 等, 2007. 干旱气候变化对甘肃省干旱灾害的影响及防旱减灾技术的研究[J]. 干旱地区农业研究, 25(4): 94-99. |
[7] | 范锦龙, 张明伟, 曹广真, 等, 2014. 全球干旱卫星监测计划[J]. 气象科技进展, 4(5): 54-57. |
[8] | 冯定原, 邱新法, 1995. 农业干旱的成因、指标、时空分布和防旱抗旱对策[J]. 中国减灾, 5(1): 22-26. |
[9] | 国家气象中心, 中国农业科学院农业资源与农业区划研究所, 中国气象局沈阳大气环境研究所, 2015. 农业干旱等级: GB/T 32136—2015[S]. 北京: 中国标准出版社. |
[10] | 韩萍, 2002. 以色列的抗旱措施[J]. 治黄科技信息, 1: 29-30. |
[11] | 纪瑞鹏, 于文颖, 冯锐, 等, 2019. 作物对干旱胁迫的响应过程与早期识别技术研究进展[J]. 灾害学, 34(2): 153-160. |
[12] | 康蕾, 张红旗, 2014. 我国五大粮食主产区农业干旱态势综合研究[J]. 中国生态农业学报, 22(8): 928-937. |
[13] | 康书江, 赵春江, 杨宝祝, 1997. 小麦内源激素脱落酸研究进展[J]. 麦类作物, 17(3): 47-50. |
[14] | 康天军, 李军波, 2018. 我国防旱抗旱法制体系的完善——基于政策指引及比较法的进路[J]. 西北农林科技大学学报(社会科学版), 18(6): 138-145. |
[15] | 雷俊, 张凯, 姚玉璧, 等, 2017. 半干旱区黑膜覆盖对马铃薯光合特性及产量的影响[J]. 干旱气象, 35(6): 1 036-1 041. |
[16] | 李柏贞, 周广胜, 2014. 干旱指标研究进展[J]. 生态学报, 34(5): 1 043-1 052. |
[17] |
李稚, 李玉朋, 李鸿威, 等, 2022. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 37(1): 37-50.
DOI |
[18] | 刘宗元, 张建平, 罗红霞, 等, 2014. 基于农业干旱参考指数的西南地区玉米干旱时空变化分析[J]. 农业工程学报, 30(2): 105-115. |
[19] | 陆亚龙, 肖功建, 2001. 气象灾害及其防御[M]. 北京: 气象出版社. |
[20] | 吕娟, 高辉, 孙洪泉, 2011. 21世纪以来我国干旱灾害特点及成因分析[J]. 中国防汛抗旱, 21(5): 38-43. |
[21] | 毛晓华, 2020. 防旱抗旱减灾长效机制的构建策略探究[J]. 南方农业, 14(20): 166-167. |
[22] | 倪深海, 吕娟, 刘静楠, 等, 2022. 变化环境下我国干旱灾害演变趋势分析[J]. 中国防汛抗旱, 32(10): 1-7. |
[23] | 屈艳萍, 吴玉成, 苏志诚, 2013. 国际干旱灾害管理实践及对我国的启示[J]. 中国水利, 8: 14-16. |
[24] | 山仑, 2011. 科学应对农业干旱[J]. 干旱地区农业研究, 29(2): 1-5. |
[25] | 孙荣强, 1994. 旱情评定与灾情指标之探讨[J]. 自然灾害学报, 3(3): 49-55. |
[26] | 覃志豪, 徐斌, 李茂松, 等, 2005. 我国主要农业气象灾害机理与监测研究进展[J]. 自然灾害学报, 14(2): 61-69. |
[27] |
王春玲, 李宏宇, 曾剑, 等, 2017. 黄土高原半干旱区马铃薯气候适宜度模拟及其时空变化特征[J]. 干旱气象, 35(5): 751-760.
DOI |
[28] | 王春乙, 2007. 重大农业气象灾害研究进展[M]. 北京: 气象出版社. |
[29] | 王润元, 邓振镛, 姚玉璧, 等, 2015. 旱区名特优作物气候生态适应性与资源利用[M]. 北京: 气象出版社. |
[30] | 吴爱民, 2011. 国际社会如何应对干旱灾害[J]. 资源导刊, (3): 46-47. |
[31] | 吴杰峰, 陈兴伟, 高路, 2017. 水文干旱对气象干旱的响应及其临界条件[J]. 灾害学, 32(1) : 199-204. |
[32] | 肖国举, 李裕, 2012. 中国西北地区粮食与食品安全对气候变化的响应研究[M]. 北京: 气象出版社. |
[33] | 熊友才, 李凤民, 2014. 气候变化下旱区农事技术[M]. 兰州: 兰州大学出版社. |
[34] | 姚国章, 袁敏, 2010. 干旱预警系统建设的国际经验与借鉴[J]. 中国应急管理, (3): 43-48. |
[35] | 姚玉璧, 张强, 李耀辉, 等, 2013. 干旱灾害风险评估技术及其科学问题与展望[J]. 资源科学, 35(9): 1 884-1 897. |
[36] | 应急管理部-教育部减灾与应急管理研究院, 北京师范大学国际安全与应急管理学院, 应急管理部国家减灾中心, 等, 2022. 2021年全球自然灾害评估报告[R]. |
[37] | 张军, 刘红, 李晓萍, 等, 2014. 干旱对小麦孕穗期叶片生理特性及产量的影响[J]. 干旱地区农业研究, 32(3): 1-8. |
[38] |
张强, 2022. 科学解读“2022年长江流域重大干旱”[J]. 干旱气象, 40(4): 545-548.
DOI |
[39] | 张强, 陈丽华, 王润元, 等, 2012a. 气候变化与西北地区粮食和食品安全[J]. 干旱气象, 30(4): 509-513. |
[40] | 张强, 邓振镛, 赵映东, 等, 2008. 全球气候变化对我国西北地区农业的影响[J]. 生态学报, 28(3): 1 210-1 218. |
[41] |
张强, 韩兰英, 张立阳, 等, 2014. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 29(1): 80-91.
DOI |
[42] | 张强, 王润元, 邓振镛, 2012b. 中国西北干旱气候变化对农业与生态影响及对策[M]. 北京: 气象出版社. |
[43] |
张强, 姚玉璧, 李耀辉, 等, 2015. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 30(2): 196-213.
DOI |
[44] | 张强, 姚玉璧, 李耀辉, 等, 2020. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 78(3): 500-521. |
[45] | 张强, 姚玉璧, 王莺, 等, 2017. 中国南方干旱灾害风险特征及其防控技术对策[J]. 生态学报, 37(21): 7 206-7 218. |
[46] | 张晓煜, 杨晓光, 李茂松, 等, 2011. 农业干旱预警研究现状及发展趋势[J]. 干旱区资源与环境, 25(11): 18-22. |
[47] | 张玉书, 米娜, 陈鹏狮, 等, 2012. 土壤水分胁迫对玉米生长发育的影响研究进展[J]. 中国农学通报, 28(3): 1-7. |
[48] | 赵鸿, 李凤民, 熊友才, 等, 2008. 土壤干旱对作物生长过程和产量影响的研究进展[J]. 干旱气象, 26(3): 67-71. |
[49] |
赵鸿, 任丽雯, 赵福年, 等, 2018. 马铃薯对土壤水分胁迫响应的研究进展[J]. 干旱气象, 36(4): 537-543.
DOI |
[50] |
赵鸿, 王润元, 尚艳, 等, 2016. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望[J]. 干旱气象, 34(1): 1-12.
DOI |
[51] | 周广胜, 何奇瑾, 汲玉河, 2016. 适应气候变化的国际行动和农业措施研究进展[J]. 应用气象学报, 27( 5) : 527-533. |
[52] | 朱增勇, 聂凤英, 2009. 美国的干旱危机处理[J]. 世界农业, 362(6): 17-19. |
[53] |
AKRAM M, 2011. Growth and yield components of wheat under water stress of different growth stages[J]. Bangladesh Journal of Agricultural Research, 36(3): 455-468.
DOI URL |
[54] |
AMBAVARAM M M R, BASU S, KRISHNAN A, et al, 2014. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress[J]. Nature Communications, 5, 5302. DOI:10.1038/ncomms6302.
DOI PMID |
[55] |
American Meteorological Society, 1997. Meteorological drought-policy statement[J]. Bulletin of the American Meteorological Society, 78: 847-849.
DOI URL |
[56] |
ANDERSON M C, HAIN C, WARDLOW B, et al, 2011. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the Continental United States[J]. Journal of Climate, 24(8): 2 025-2 044.
DOI URL |
[57] |
ANGELOPOULOS K, DICHIO B, XILOYANNIS C, 1996. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering[J]. Journal of Experimental Botany, 47: 1 093-1 100.
DOI URL |
[58] |
ARAUS J L, SLAFER G A, REYNOLDS M P, et al, 2002. Plant breeding and drought in C3 cereals: what should we breed for?[J]. Annals of Botany, 89(7): 925-940.
DOI URL |
[59] |
BAKER N R, 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 59: 89-113.
DOI PMID |
[60] | BANDI V, SHANKER A K, SHANKER C, et al, 2012. Crop Stress and its Management: Perspectives and Strategies[M]. Netherlands: Springer. |
[61] |
BATTAGLIA M, SOLÓRZANO R M, HERNÁNDEZ M, et al, 2007. Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings[J]. Planta, 225: 1 121-1 133.
DOI URL |
[62] |
BOGUSZEWSKA-MANKOWSKA D, PIECZYNSKI M, WYRZ- YKOWSKA A, et al, 2018. Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought[J]. Journal of Agronomy and Crop Science, 204(1):13-30.
DOI URL |
[63] | BOYER J S, 1976. Photosynthesis at low water potentials[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 273: 501-512. |
[64] |
BOYER J S, WESTGATE M E, 2004. Grain yields with limited water[J]. Journal of Experimental Botany, 55(407): 2 385-2 394.
DOI URL |
[65] |
CHAVES M M, MAROCO J P, PEREIRA J S, 2003. Understanding plant responses to drought-from genes to the whole plant[J]. Functional Plant Biology, 30(3): 239-264.
DOI URL |
[66] |
COLLINS K, HANNAFORD J, SVOBODA M, et al, 2016. Stakeholder coinquiries on drought impacts, monitoring and early warning systems[J]. Bulletin of the American Meteorological Society, 97: ES217-ES220.
DOI URL |
[67] |
COOK E R, SEAGER R, CANE M A, et al, 2007. North American drought: reconstructions, causes, and consequences[J]. Earth-Science Reviews, 81: 93-134.
DOI URL |
[68] |
CORNIC G, PRIOUL J L, LOUASON G, 1983. Stomatal and non-stomatal contribution in the decline in leaf net CO2 uptake during rapid water stress[J]. Physiologia Plantarum, 58(3): 295-301.
DOI URL |
[69] |
COSTA L D, VEDOVE G D, GIANQUINTO G, et al, 1997. Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress[J]. Potato Research, 40(1): 19-34.
DOI URL |
[70] |
DAI A, TRENBERTH K E, QIAN T, 2004. A global dataset of Palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming[J]. Journal of Hydrometeorology, 5(6): 1 117-1 130.
DOI URL |
[71] |
DAVIES W J, ZHANG J H, 1991. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual Review Plant Physiology and Plant Molecular Biology, 42: 55-76.
DOI URL |
[72] |
EI HAFID R, SMITH D H, KARROU M, et al, 1998. Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment[J]. Annals of Botany, 81(2): 363-370.
DOI URL |
[73] | FAO Food and Agriculture Organization of the United Nations, 2006. The state of food insecurity in the world: eradicating world hunger—taking stock ten years after the World Food Summit[R]. FAO, Rome, Italy. |
[74] | FAO Food and Agriculture Organization of the United Nations, 2018. The impact of disasters and crises on agriculture and food security[R]. FAO, Rome, Italy. |
[75] | FAROOQ M, WAHID A, KOBAYASHI N, et al, 2009. Plant drought stress: effects, mechanisms and management[J]. Sustainable Agriculture, 29: 153-188. |
[76] |
FU X, SVOBODA M, TANG Z, et al, 2013. An overview of US state drought plans: crisis or risk management?[J]. Natural Hazards. 69(3):1607-1 627.
DOI URL |
[77] |
GAMBETTA G A, HERRERA J C, DAYER S, et al, 2020. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance[J]. Journal of Experimental Botany, 71(16):4658-4 676.
DOI PMID |
[78] |
GENTY B, BRIANTAIS J M, DA SILVA J B, 1987. Effects of drought on primary photosynthetic processes of cotton leaves[J]. Plant Physiology, 83(2): 360-364.
DOI URL |
[79] | GLEICK P H, 2000. The World’s Water 2000-2001: The Biennial Report on Freshwater Resources[M]. Washington D C: Island Press. |
[80] |
GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I, 2020. The physiology of plant responses to drought[J]. Science, 368: 266-269.
DOI PMID |
[81] |
HEFFERNAN O, 2013. The dry facts[J]. Nature, 501(7468):S2-S3.
DOI |
[82] |
HERVÁS-GÁMEZ C, DELGADO-RAMOS F, 2020. Are the modern drought management plans modern enough?The Guadalquivir River basin case in Spain[J]. Water, 12, 49. DOI:10.3390/W12010049.
DOI URL |
[83] | HIRT H, SHINOZAKI K, 2004. Plant Responses to Abiotic Stress[M]. Berlin and Heidelberg, Germany: Springer-Verlag. |
[84] |
HIRUT B, SHIMELIS H, FENTAHUN M, et al, 2017. Combining ability of highland tropic adapted potato for tuber yield and yield components under drought[J]. Public Library of Science ONE, 12(7), e0181541. DOI:10.1371/journal.pone.0181541.
DOI |
[85] | HOLLINGER S E, ISARD S A, WELFORD M R, 1993. A new soil moisture drought index for predicting crop yields[C]// Preprints, Eighth Conference on Applied Climatology, Anaheim, CA, American Meteorology Society: 187-190. |
[86] | HOSSAIN A, TEIXEIRA DA SILVA J A, LOZOVSKAYA M V, et al, 2012. The effect of high temperature stress on the phenology, growth and yield of five wheat (Triticum aestivum L.) genotypes[J]. The Asian and Australasian Journal of Plant Science and Biotechnology, 6(1): 14-23. |
[87] |
HUANG J, YU H, GUAN X, et al, 2016. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 6(2): 166-172.
DOI |
[88] | IPCC, 2007. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press:211-272. |
[89] | IPCC, 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability[R/OL]. [2023-04-02]. https://www.ipcc.ch/report/ar6/wg2/. |
[90] |
JEFFERIES R A, 1993. Responses of potato genotypes to drought. I. Expansion of individual leaves and osmotic adjustment[J]. Annals of Applied Biology, 122(1): 93-104.
DOI URL |
[91] | JONES H G, CORLETT J E, 1992. Current topics in drought physiology[J]. Journal of Agricultural Science, 119(3), 291-296. |
[92] |
KOBATA T, PALTA J A, TURNER N C, 1992. Rate of development of postanthesis water deficits and grain filling of spring wheat[J]. Crop Science, 32(5): 1 238-1 242.
DOI URL |
[93] | KONCAGÜL E, TRAN M, CONNOR R, et al, 2020. Water and climate change. UNESCO & WWAP. World water development report 2020[R]. |
[94] |
LESK C, ROWHANI P, RAMANKUTY N, 2016. Influence of extreme weather disasters on global crop production[J]. Nature, 529(7584): 84-87.
DOI |
[95] |
LI Y, GU W, CUI W, et al, 2015. Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China[J]. Natural Hazards, 77:1289-1 303.
DOI URL |
[96] |
LOYLA RODRÍGUEZ P, DANNY S C, CARLOS EDUADO N L, et al, 2016. Growth and phenology of three Andean potato varieties (Solanum tuberosum L.) under water stress[J]. Agronomía Colombiana, 34: 141-154.
DOI URL |
[97] |
MACHADO S, PAULSEN G M, 2001. Combined effects of drought and high temperature on water relations of wheat and sorghum[J]. Plant and Soil, 233(2): 179-187.
DOI URL |
[98] |
MACKERRON D K L, JEFFERIES R A, 1986. The influence of early soil moisture stress on tuber numbers in potato[J]. Potato Research, 29: 299-312.
DOI URL |
[99] | MAFAKHERI A, SIOSEMARDEH A, BAHRAMNEJAD B, et al, 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars[J]. Australian Journal of Crop Science, 4(8): 580-585. |
[100] |
MANE S P, ROBINET C V, ULANOV A, et al, 2008. Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes[J]. Functional Plant Biology, 35(8): 669-688.
DOI PMID |
[101] | MCWILLIAM J R, 1986. The national and international importance of drought and salinity effects on agricultural production[J]. Australian Journal Plant Physiology, 13(1): 1-13. |
[102] |
MEDRANO H, ESCALONA J M, BOTA J, et al, 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter[J]. Annals of Botany, 89(7): 895-905.
DOI URL |
[103] | METZ B, DAVIDSON O, BOSCH P, et al, 2007. Climate change 2007: mitigation of climate change[M]. Cambridge: Cambridge University Press. |
[104] |
MIRZABAEV A, BEZNER KERR R, HASEGAWA T, et al, 2023. Severe climate change risks to food security and nutrition[J]. Climate Risk Management, 39, 100473. DOI:10.1016/j.crm.2022.100473.
DOI URL |
[105] |
MORGAN J M. 1984. Osmoregulation and water stress in higher plants[J]. Annual Review of Plant Physiology, 35: 299-319.
DOI URL |
[106] | MORGAN P W, 1991. Effects of abiotic stresses on plant hormone systems[J]. Plant Biology, 12: 113-146. |
[107] |
NICOLAS M E, LAMBERS H, SIMPSON R J, et al, 1985. Effect of drought on metabolism and partitioning of carbon in two wheat varieties differing in drought-tolerance[J]. Annals of Botany, 55(5): 727-742.
DOI URL |
[108] |
OBIDIEGWU J E, BRYAN G B, JONES H G, et al, 2015. Coping with drought: stress and adaptive responses in potato and perspectives for improvement[J]. Frontiers in Plant Science, 6, 542. DOI:10.3389/fpls.2015.00542.
DOI PMID |
[109] |
PALMER W C, 1968. Keeping track of crop moisture conditions, nationwide: the new crop moisture index[J]. Weatherwise, 21(4): 156-161.
DOI URL |
[110] |
PETERS-LIDARD C D, MOCKO D M, SU L, et al, 2021. Advances in Land surface models and indicators for drought monitoring and prediction[J]. Bulletin of the American Meteorological Society, 102: E1 099-E1 122.
DOI URL |
[111] |
PINHEIRO C, CHAVES M M, 2011. Photosynthesis and drought: can we make metabolic connections from available data?[J]. Journal of Experimental Botany, 62(3): 869-882.
DOI PMID |
[112] |
QIANG S C, ZHANG Y, FAN J L, et al, 2019a. Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China[J]. Agricultural Water Management, 213: 996-1 003.
DOI URL |
[113] |
QIANG S C, ZHANG F C, DYCK M C, et al, 2019b. Determination of critical nitrogen dilution curve based on leaf area index for winter wheat in the Guanzhong Plain, Northwest China[J]. Journal of Integrative Agriculture, 18(10): 2 369-2 380.
DOI URL |
[114] |
QIN J H, BIAN C S, LIU J G, et al, 2019. An efficient greenhouse method to screen potato genotypes for drought tolerance[J]. Scientia Horticulturae, 253: 61-69.
DOI URL |
[115] |
RAMIREZ D A YACTAYO W, RENS L R, et al, 2016. Defining biological thresholds associated to plant water status for monitoring water restriction effects: stomatal conductance and photosynthesis recovery as key indicators in potato[J]. Agricultural Water Management, 177: 369-378.
DOI URL |
[116] | RAMPINO P, PATALEO S, GERERDI C, et al, 2006. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes[J]. Plant, Cell & Environment, 29(12): 2 143-2 152. |
[117] | RICARDO A, 2012. Plant responses to drought stress from morphological to molecular features[M]. Berlin, Heidelberg: Springer-Verlag. |
[118] |
SALINGER M J, SIVAKUMAR M V K, MOTHA R, 2005. Reducing vulnerability of agriculture and forestry to climate variability and change: workshop summary and recommendations[J]. Climatic Change, 70: 341-362.
DOI URL |
[119] |
SERRAJ R, KRISHNAMURTHY L, KASHIWAGI J, et al, 2004. Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought[J]. Field Crops Research, 88: 115-127.
DOI URL |
[120] |
STEINEMANN A, LACOBELLIS S F, CAYAN D R, 2015. Developing and evaluating drought indicators for decision-making[J]. Journal of Hydrometeorology, 16(4): 1 793-1 803.
DOI URL |
[121] |
SUPRATIM B, RAMEGOWDA H V, ANUJ K, et al, 2016. Plant adaptation to drought stress[J]. F1000 Research, 5, 1554. DOI: 10.12688/f1000research.7678.1.
DOI URL |
[122] |
TEZARA W, MITCHELL V J, DRISCOLL S D, et al, 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature, 401: 914-917.
DOI URL |
[123] | TURNER N C, 1986. Crop water deficits: a decade of progress[J]. Advances in Agronomy, 39: 1-51. |
[124] |
TURNER N C, MOLYNEUX N, YANG S, et al, 2011. Climate change in south-west Australia and north-west China: challenges and opportunities for crop production[J]. Crop and Pasture Science, 62(6): 445-456.
DOI URL |
[125] |
ULRICH D E M, SEVANTO S, RYAN M, et al, 2019. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought[J]. Scientific Reports, 9, 249. DOI: 10.1038/s41598-018-36971-3.
DOI PMID |
[126] | UNCCD United Nations Convention to combat Desertification, 2022. Drought in numbers 2022[R]. |
[127] |
VASQUEZ-ROBINET C, MANE S P, ULANOV A V, et al, 2008. Physiological and molecular adaptations to drought in Andean potato genotypes[J]. Journal of Experimental Botany, 59(8): 2 109-2 123.
DOI URL |
[128] | WILHITE D A, 2000. Drought: a global assessment[M]. London & New York: Routledge. |
[129] |
WILHITE D A, SVOBODA M D, HAYES M J, 2007. Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness[J]. Water Resource Management, 21: 763-774.
DOI URL |
[130] | WMO and GWP World Meteorological Organization and Global Water Partnership, 2014. National drought management policy guidelines: a template for action[M]. WMO, Geneva, Switzerland and GWP, Stockholm, Sweden. |
[131] | WMO and GWP World Meteorological Organization and Global Water Partnership, 2017. Benefits of action and costs of inaction: drought mitigation and preparedness[M]. WMO, Geneva, Switzerland and GWP, Stockholm, Sweden. |
[132] | XU Z, ZHOU G, SHIMIZU H, 2010. Plant responses to drought and rewatering[J]. Plant Signaling & Behavior, 5: 649-654. |
[133] |
ZAKALUK R, RANJAN R S, 2006. Artificial neural network modeling of leaf water potential for potatoes using RGB digital images: a greenhouse study[J]. Potato Research, 49: 255-272.
DOI URL |
[134] |
ZAREI A R, SHABANI A, MAHMOUDI M R, 2020. Evaluation of the influence of occurrence time of drought on the annual yield of rain-fed winter wheat using backward multiple generalized estimation equation[J]. Water Resources Management, 34: 2 911-2 931.
DOI |
[135] | ZHANG B, CHEN R, ZHANG Y, 2009. Comprehensive index for drought evaluation[J]. Water Resources Protection, 25(1): 5-18. |
[136] |
ZHAO H, WANG R Y, MA B L, et al, 2014. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem[J]. Field Crops Research, 161:137-148.
DOI URL |
[137] |
ZHAO H, XIONG Y C, LI F M, et al, 2012. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture temperature improvement in a semi-arid agroecosystem[J]. Agricultural Water Management, 104: 68-78.
DOI URL |
[138] |
ZHOU J, WANG X, JIAO Y, et al, 2007. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle[J]. Plant Molecular Biology, 63: 591-608.
PMID |
[139] |
ZHU X, GONG H, CHEN G, et al, 2005. Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages[J]. Journal of Arid Environments, 62(1): 1-14.
DOI URL |
[140] |
ZINSELMEIER C, WESTGATE M E, SCHUSSLER J R, et al, 1995. Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries[J]. Plant Physiology, 107(2): 385-391.
PMID |
[1] | 周建琴, 李蒙, 陶云, 窦小东, 王玉尤婷. 云南农业干旱灾害演变特征及其与气候因子的关系研究[J]. 干旱气象, 2025, 43(1): 21-31. |
[2] | 陈逸骁, 岳思妤, 夏雯雯. 中国干旱灾害的时空变化及其与直接经济损失的关联性研究[J]. 干旱气象, 2024, 42(4): 485-497. |
[3] | 田国珍, 任玉欢, 杨茜, 黄小燕, 赵斯楠, 左小瑞, 李智才. 三种遥感干旱监测指数在黄土高原东部的适用性研究[J]. 干旱气象, 2024, 42(3): 338-346. |
[4] | 沙莎, 王丽娟, 王小平, 胡蝶, 张良. 基于温度植被干旱指数(TVDI)的甘肃省农业干旱监测方法研究[J]. 干旱气象, 2024, 42(1): 27-38. |
[5] | 朱丽, 吕潇雨, 郭浩, 孟翔晨, 田芸菲. ERA5-Land降水产品在黄河流域干旱监测中的适用性研究[J]. 干旱气象, 2023, 41(5): 677-687. |
[6] | 王莺, 张强, 王劲松, 韩兰英, 王素萍, 张良, 姚玉璧, 郝小翠, 王胜. 21世纪以来干旱研究的若干新进展与展望[J]. 干旱气象, 2022, 40(4): 549-566. |
[7] | 张国宏. 秋季巴伦支海海冰与中国京津冀地区2月气温变化的联系[J]. 干旱气象, 2022, 40(2): 187-194. |
[8] | 李万志, 张调风, 马有绚, 冯晓莉, 余迪, 陈冀青. 基于灾害风险因子的青海省干旱灾害风险区划[J]. 干旱气象, 2021, 39(3): 480-485. |
[9] | 胡蝶, 沙莎, 王丽娟, 王玮. 欧空局主被动微波土壤水分融合产品在甘肃省干旱监测中的应用[J]. 干旱气象, 2019, 37(4): 517-528. |
[10] | 王芝兰, 周甘霖, 张宇, 李耀辉, 董安祥. 美国干旱监测预测业务发展及其科学挑战[J]. 干旱气象, 2019, 37(2): 183-197. |
[11] | 王思琪, 张翔, 陈能成, 周家香, 胡楚丽, 彭小婷. 基于多种干旱指数的长江中下游五省干旱监测与对比[J]. 干旱气象, 2019, 37(2): 209-217. |
[12] | 刘 凯,孙 丽,孙海玥,薛婉擎,翟光辉. 基于风云微波数据的中国冬小麦区干旱监测研究[J]. 干旱气象, 2017, 35(6): 918-925. |
[13] | 胡蝶,郭铌,王丽娟,沙莎,王玮,芦亚玲,王芝兰. TRMM降雨数据在甘肃省干旱监测中的应用[J]. 干旱气象, 2017, 35(3): 374-. |
[14] | 田宏伟,李树岩. 河南省夏玉米干旱综合风险精细化区划[J]. 干旱气象, 2016, 34(5): 852-859. |
[15] | 王劲松,张 强,王素萍,王 莺,王 静,姚玉璧,任余龙. 西南和华南干旱灾害链特征分析[J]. 干旱气象, 2015, 33(2): 187-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: