干旱气象 ›› 2023, Vol. 41 ›› Issue (4): 570-578.DOI: 10.11755/j.issn.1006-7639(2023)-04-0570
收稿日期:
2022-07-02
修回日期:
2022-12-09
出版日期:
2023-08-31
发布日期:
2023-08-29
通讯作者:
周天(1986—),男,博士,副教授,主要从事气溶胶及其气候效应研究。 E-mail:zhoutian@lzu.edu.cn。
作者简介:
廖家艳(1999—),女,研究生,主要从事气溶胶及其气候效应研究。 E-mail:liaojy18@lzu.edu.cn。
基金资助:
LIAO Jiayan(), ZHOU Tian(), HAN Biseng, HUANG Zhongwei, BI Jianrong
Received:
2022-07-02
Revised:
2022-12-09
Online:
2023-08-31
Published:
2023-08-29
摘要:
气溶胶类型的准确识别是进一步研究其气候与环境效应的重要前提。基于兰州大学半干旱气候与环境观测站2009年10月至2012年11月地基双波长偏振激光雷达观测资料,分别在清洁天、人为污染物、沙尘事件和强沙尘暴事件4种典型情形下挑选若干个例,对其气溶胶消光系数、体积线性退偏比、气溶胶退偏比等进行统计分析,明确不同气溶胶类型的判定阈值。结果表明:清洁天该区域气溶胶消光系数小于0.085 km-1。在消光系数大于该阈值的污染情形下,人为污染物的体积线性退偏比小于0.07,相应的气溶胶退偏比小于0.09;污染沙尘的体积线性退偏比介于0.07和0.22之间,气溶胶退偏比为0.09~0.31;纯沙尘的体积线性退偏比大于0.22,气溶胶退偏比大于0.31。当出现强沙尘暴时,体积线性退偏比大于0.35,气溶胶退偏比大于0.49。
中图分类号:
廖家艳, 周天, 韩璧森, 黄忠伟, 闭建荣. 我国西北半干旱区气溶胶类型的地基激光雷达判别[J]. 干旱气象, 2023, 41(4): 570-578.
LIAO Jiayan, ZHOU Tian, HAN Biseng, HUANG Zhongwei, BI Jianrong. Aerosol types discrimination in semi-arid region of Northwest China using ground-based lidar data[J]. Journal of Arid Meteorology, 2023, 41(4): 570-578.
典型情形 | 是否穿透气溶胶层 | 体积线性退偏比 | 消光系数 |
---|---|---|---|
清洁大气 | 是 | 小 | 小 |
人为污染 | 是 | 小 | 大 |
沙尘 | 是 | 大 | 大 |
强沙尘暴 | 否 | 大 | 大 |
表1 主导气溶胶情景挑选依据
Tab.1 Dominant aerosol type selection criteria
典型情形 | 是否穿透气溶胶层 | 体积线性退偏比 | 消光系数 |
---|---|---|---|
清洁大气 | 是 | 小 | 小 |
人为污染 | 是 | 小 | 大 |
沙尘 | 是 | 大 | 大 |
强沙尘暴 | 否 | 大 | 大 |
图2 强沙尘暴事件的体积线性退偏比和消光系数的频数分布及概率密度分布
Fig.2 Frequency distribution and probability density distribution of volume linear depolarization ratio and extinction coefficient of severe sandstorm events
图3 清洁大气、人为污染和沙尘情形下体积线性退偏比和消光系数的频数分布及概率密度分布
Fig.3 Frequency distribution and probability density distribution of volume linear depolarization ratio and extinction coefficient under the conditions of clean sky, air pollution and dust weathers
图4 2009年12月9日后向散射比(a)、气溶胶退偏比(b)、体积线性退偏比(c)的时间-高度剖面及23:00 UTC各变量廓线(d)
Fig.4 Time-height cross sections of backscatter ratio (a), aerosol depolarization ratio (b) and volume linear depolarization ratio (c) and the profiles of each variable at 23:00 UTC (d) on 9 December 2009
图5 2009年10月1日至2012年11月30日气溶胶退偏比和后向散射比的频数分布
Fig.5 Frequency distribution of aerosol depolarization ratio and backscatter ratio from 1 October 2009 to 30 November 2012
图6 2009年12月9日气溶胶退偏比控制后的后向散射比(a)、气溶胶退偏比(c)的时间-高度剖面及23:00 UTC后向散射比(b)与气溶胶退偏比(d)廓线
Fig.6 Time-height cross sections of backscatter ratio (a) and aerosol depolarization ratio (c) after data control of aerosol depolarization ratio and profiles of backscatter ratio (b) and aerosol depolarization ratio (d) at 23:00 UTC on 9 December 2009
图7 4种典型情形下的体积线性退偏比和气溶胶退偏比频数分布及线性回归
Fig.7 Frequency distribution and linear regression of volume linear depolarization ratio and aerosol depolarization ratio under four typical conditions
典型情形 | 消光系数/km-1 | 体积线性 退偏比 | 气溶胶 退偏比 |
---|---|---|---|
清洁大气 | <0.085 | <0.07 | <0.09 |
人为污染 | >0.085 | <0.07 | <0.09 |
污染沙尘 | >0.085 | >0.07且<0.22 | >0.09且<0.31 |
沙尘 | >0.085 | >0.22 | >0.31 |
强沙尘暴 | >0.085 | >0.35 | >0.49 |
表2 气溶胶类别判定阈值
Tab.2 Discrimination threshold of aerosol types
典型情形 | 消光系数/km-1 | 体积线性 退偏比 | 气溶胶 退偏比 |
---|---|---|---|
清洁大气 | <0.085 | <0.07 | <0.09 |
人为污染 | >0.085 | <0.07 | <0.09 |
污染沙尘 | >0.085 | >0.07且<0.22 | >0.09且<0.31 |
沙尘 | >0.085 | >0.22 | >0.31 |
强沙尘暴 | >0.085 | >0.35 | >0.49 |
[1] | 毕鸿儒, 张越, 陈思宇, 等, 2022. 基于MIROC6模式探讨1850—2014年全球不同类型人为气溶胶的时空分布及辐射强迫[J]. 兰州大学学报(自然科学版), 58(1): 111-117. |
[2] | 毛毛, 孙昊飞, 2020. 随机取向沙尘气溶胶激光雷达退偏比特性研究[J]. 南京信息工程大学学报(自然科学版), 12(2): 256-260. |
[3] | 任朝霞, 杨达源, 2007. 西北干旱区近50年气候变化特征与趋势[J]. 地球科学与环境学报, 29(1): 99-102. |
[4] | 姚玉璧, 肖国举, 王润元, 等, 2009. 近50年来西北半干旱区气候变化特征[J]. 干旱区地理, 32(2): 159-165. |
[5] | 尹宏, 韩志刚, 1989. 气溶胶大气对太阳辐射的吸收[J]. 气象学报, 47(1): 118-123. |
[6] | 周天, 黄忠伟, 黄建平, 等, 2013. 黄土高原地区云垂直结构的激光雷达遥感研究[J]. 干旱气象, 31(3): 246-253. |
[7] |
ANDREAS B, TAKUJI N, 2002. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature[J]. Optics Express, 10(16): 805-817.
PMID |
[8] |
BAARS H, SEIFERT P, ENGELMANN R, et al, 2017. Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements[J]. Atmospheric Measurement Techniques, 10(9): 3 175-3 201.
DOI URL |
[9] | BOUCHER O, RANDALL D, ARTAXO P, et al, 2013. Climate Change 2013: the physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[C]// Clouds and Aerosols. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. |
[10] |
BURTON S P, FERRARE R A, HOSTETLER C A, et al, 2012. Aerosol classification using airborne high spectral resolution lidar measurements-methodology and examples[J]. Atmospheric Measurement Techniques, 5(1): 73-98.
DOI URL |
[11] |
CHEN W N, TSAI F J, CHOU C C K, et al, 2007. Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan[J]. Atmospheric Environment, 41(36): 7 698-7 714.
DOI URL |
[12] |
CORDOBA-JABONERO C, SICARD M, ANSMANN A, et al, 2018. Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements[J]. Atmospheric Measurement Techniques, 11(8): 4 775-4 795.
DOI URL |
[13] |
GROβ S, TESCHE M, FREUDENTHALER V, et al, 2011. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2[J]. Tellus Series B-Chemical and Physical Meteorology, 63(4): 706-724.
DOI URL |
[14] |
HAN B, ZHOU T, ZHOU X, et al, 2022. A new algorithm of atmospheric boundary layer height determined from polarization lidar[J]. Remote Sensing, 14(21): 5 436-5 460.
DOI URL |
[15] |
JIN Y, KAI K, SHIBATA T, et al, 2010. Validation of the dust layer structure over the Taklimakan Desert, China by the CALIOP space-borne lidar using ground-based lidar[J]. Sola, 6(36): 121-124.
DOI URL |
[16] |
KE J, SUN Y, DONG C, et al, 2022. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. Photonix, 3(1): 17-37.
DOI |
[17] |
LIU D, WANG Z, LIU Z, et al, 2008. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements[J]. Journal of Geophysical Research-Atmospheres, 113, D16214. DOI:10.1029/2007JD009776.
DOI |
[18] | MA X, YU F, LUO G, 2012. Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties[J]. Atmospheric Chemistry and Physics, 12(12): 5 563-5 581. |
[19] |
MA Y, XIN J, MA Y, et al, 2017. Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest China[J]. Advances in Atmospheric Sciences, 34(8): 1 017-1 026.
DOI URL |
[20] |
MAMOURI R E, ANSMANN A, 2014. Fine and coarse dust separation with polarization lidar[J]. Atmospheric Measurement Techniques, 7(11): 3 717-3 735.
DOI URL |
[21] | MYLONAKI M, GIANNAKAKI E, PAPAYANNIS A, et al., 2021. Aerosol type classification analysis using EARLINET multiwavelength and depolarization lidar observations[J]. Atmospheric Chemistry and Physics, 21(3): 2 211-2 227. |
[22] |
OMAR A H, WINKER D M, KITTAKA C, et al, 2009. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 26(10): 1 994-2 014.
DOI URL |
[23] |
PAN X, UNO I, WANG Z, et al, 2017. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution[J]. Scientific Reports, 7(1): 335-343.
DOI PMID |
[24] |
PREWITT J M S, MENDELSOHN M L, 1966. The analysis of cell images[J]. Annals of the New York Academy of Sciences, 128(3): 1 035-1 053.
DOI URL |
[25] | QI S, HUANG Z, MA X, et al, 2021. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements[J]. Optics Express, 29(15): 23 461-23 476. |
[26] | RAMASWAMY V, BOUCHER O, HAIGH J, et al, 2001. TAR Climate Change 2001: The Scientific Basis[C]// Radiative Forcing of Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press: 353-405. |
[27] |
SHIMIZU A, SUGIMOTO N, MATSUI I, et al, 2004. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia[J]. Journal of Geophysical Research-Atmospheres, 109, D19S17. DOI:10.1029/2002JD003253.
DOI |
[28] |
SUGIMOTO N, NISHIZAWA T, SHIMIZU A, et al, 2011. Aerosol classification retrieval algorithms for EARTHCARE/ ATLID, CALIPSO/CALIOP, and ground-based lidars[C]// 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada: IEEE, 4 111-4 114. DOI: 10.1109/igarss.2011.6050137.
DOI |
[29] |
TOLEDANO C, WIEGNER M, GROSS S, et al, 2011. Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2[J]. Tellus Series B-Chemical and Physical Meteorology, 63(4): 635-648.
DOI URL |
[30] |
ZACK G W, ROGERS W E, LATT S A, 1977. Automatic measurement of sister chromatid exchange frequency[J]. Journal of Histochemistry & Cytochemistry, 25(7): 741-753.
DOI URL |
[31] |
ZHANG Z, HUANG J, CHEN B, et al, 2019. Three-year continuous observation of pure and polluted dust aerosols over northwest China using the ground-based lidar and sun photometer data[J]. Journal of Geophysical Research-Atmospheres, 124(2): 1 118-1 131.
DOI URL |
[32] |
ZHOU T, XIE H, BI J, et al, 2018. Lidar measurements of dust aerosols during Three Field Campaigns in 2010, 2011 and 2012 over Northwestern China[J]. Atmosphere, 9(5): 173-193.
DOI URL |
[33] |
ZHOU T, XIE H L, JIANG T, et al, 2021. Seasonal characteristics of aerosol vertical structure and autumn enhancement of non-spherical particle over the semi-arid region of northwest China[J]. Atmospheric Environment, 244, 117912. DOI:10.1016/j.atmosenv.2020.117912.
DOI |
[1] | 齐月, 张强, 胡淑娟, 王润元, 杨阳, 雷俊, 王鹤龄, 赵鸿, 褚超, 靳荣. 干旱胁迫下春玉米叶片光合参数对叶温的响应[J]. 干旱气象, 2023, 41(2): 215-222. |
[2] | 张君霞, 黄武斌, 杨秀梅, 刘维成, 周子涵, 沙宏娥. 陇东半干旱区一次特大暴雨事件的降水极端性分析[J]. 干旱气象, 2022, 40(6): 922-932. |
[3] | 沙宏娥, 傅朝, 刘维成, 徐丽丽, 刘娜, 刘新雨, 马绎皓. 西北东部半干旱区一次极端特大暴雨的触发和维持机制[J]. 干旱气象, 2022, 40(6): 933-944. |
[4] | 杨阳, 齐月, 赵鸿, 马绎皓, 朱丹. 水分胁迫对干旱半干旱区玉米关键生育期生长发育及产量的影响及评价[J]. 干旱气象, 2022, 40(6): 1059-1067. |
[5] | 张琳焓, 闭建荣, 张雪腾, 李正鹏, 赵长明, 马晓俊. 黄土高原半干旱区2020年生长季草地土壤呼吸特征及其影响因素[J]. 干旱气象, 2022, 40(3): 354-363. |
[6] | 王 健,仝纪龙,肖贻青,吴肖燕,张文煜. 东亚典型干旱、半干旱区夏季感热通量的年代际变化特征[J]. 干旱气象, 2018, 36(2): 203-211. |
[7] | 张凯1,王润元1,王鹤龄1,赵鸿1,齐月1,赵福年1,陈斐1,雷俊2. CO2浓度升高对半干旱区春小麦生长发育及产量影响的试验研究[J]. 干旱气象, 2017, 35(2): 306-312. |
[8] | 药静宇,王国印,黄建平,闭建荣. 黄土高原半干旱区净碳交换量的特征分析[J]. 干旱气象, 2016, 34(1): 88-95. |
[9] | 赵年武,郭连云,赵恒和. 高寒半干旱地区马铃薯生育期气候因子变化规律及其影响[J]. 干旱气象, 2015, 33(6): 1024-1030. |
[10] | 曹越前,张武,药静宇,王暐. 半干旱区云量变化特征及其与太阳辐射关系的研究[J]. 干旱气象, 2015, 33(4): 684-693. |
[11] | 张 凯, 王润元,王鹤龄, 赵 鸿, 阳伏林, 赵福年, 雷 俊. 增温对半干旱区春小麦田间水分特征的影响[J]. 干旱气象, 2015, 33(1): 52-58. |
[12] | 朱 岩,左洪超,郭阳,武建军. 黄土高原半干旱区异常能量闭合率特征分析[J]. 干旱气象, 2014, 32(5): 719-726. |
[13] | 管晓丹,程善俊,郭瑞霞,季明霞. 干旱半干旱区土壤湿度数值模拟研究进展[J]. 干旱气象, 2014, 32(1): 135-141. |
[14] | 程善俊, 管晓丹, 黄建平, 季明霞. 利用 GLDAS 资料分析黄土高原半干旱区土壤湿度对气候变化的响应[J]. 干旱气象, 2013, 31(4): 641-649. |
[15] | 胡蝶,张镭,沙莎,王宏斌. 西北地区 MODIS 气溶胶产品的对比应用分析[J]. 干旱气象, 2013, 31(4): 677-683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: