[1] |
卜令铎, 张仁和, 常宇, 等, 2010. 苗期玉米叶片光合特性对水分胁迫的响应[J]. 生态学报, 30(5): 1 184-1 191.
|
[2] |
蔡福, 米娜, 纪瑞鹏, 等, 2017. 关键发育期干旱及复水过程对春玉米主要生理参数的影响[J]. 应用生态学报, 28(11): 3 643-3 652.
|
[3] |
陈图强, 徐贵青, 陈家祯, 等, 2023. 不同灌水量对核桃树生理、生长和果实品质的影响[J]. 生态学杂志, 42(11): 2 578-2 587.
|
[4] |
龚容, 高琼, 2015. 叶片结构的水力学特性对植物生理功能影响的研究进展[J]. 植物生态学报, 39(3): 300-308.
DOI
|
[5] |
姜寒冰, 张玉翠, 任晓东, 等, 2019. 作物水分利用效率研究方法及尺度传递研究进展[J]. 中国生态农业学报:中英文, 27(1): 50-59.
|
[6] |
姜鹏, 秦美欧, 蔡福, 等, 2023. 干旱-复水联动对东北春玉米光合生理与产量的影响[J]. 干旱气象, 41(2): 207-214.
DOI
|
[7] |
雷俊, 张凯, 姚玉璧, 等, 2017. 半干旱区黑膜覆盖对马铃薯光合特性及产量的影响[J]. 干旱气象, 35(6): 1 036-1 041.
|
[8] |
李建查, 孙毅, 赵广, 等, 2018. 干热河谷不同土壤水分下甜玉米灌浆期光合作用光响应特征[J]. 热带作物学报, 39(11): 2 169-2 175.
|
[9] |
李民青, 周乐, 王喜勇, 等, 2023. 7种荒漠木本植物枝干与叶片光合特征及其影响因素[J]. 应用生态学报, 34(10): 2 637-2 643.
|
[10] |
李义博, 宋贺, 周莉, 等, 2017. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 41(12): 1 289-1 300.
|
[11] |
麻雪艳, 周广胜, 2018. 夏玉米叶片气体交换参数对干旱过程的响应[J]. 生态学报, 38(7): 2 372-2 383.
|
[12] |
齐月, 张强, 胡淑娟, 等, 2023. 干旱胁迫下春玉米叶片光合参数对叶温的响应[J]. 干旱气象, 41(2): 215-222.
DOI
|
[13] |
任宗悦, 刘晓静, 刘家福, 等, 2020. 近60年东北地区春玉米旱涝趋势演变研究[J]. 中国生态农业学报:中英文, 28(2): 179-190.
|
[14] |
宋丰萍, 蒙祖庆, 2018. 干旱胁迫下作物光合参数研究进展[J]. 高原农业, 2(2):138-144.
|
[15] |
宋贺, 蒋延玲, 许振柱, 等, 2019. 玉米光合生理参数对全生育期干旱与拔节后干旱过程的响应[J]. 生态学报, 39(7): 2 405-2 415.
|
[16] |
许大全, 2013. 光合作用学[M]. 北京: 科学出版社:225.
|
[17] |
薛青武, 上官周平, 1990. 旱地作物的光合作用与产量[J]. 山西农业科学, 18(11): 27-30.
|
[18] |
杨阳, 齐月, 赵鸿, 等, 2022. 水分胁迫对干旱半干旱区玉米关键生育期生长发育及产量的影响及评价[J]. 干旱气象, 40(6): 1 059-1 067.
|
[19] |
叶子飘, 康华靖, 2012. 植物光响应修正模型中系数的生物学意义研究[J]. 扬州大学学报:农业与生命科学版, 33(2): 51-57.
|
[20] |
叶子飘, 郑卓, 康华靖, 等, 2019. 自然条件下中熟籼稻初穗期剑叶光合的气孔和非气孔限制特征[J]. 生态学杂志, 38(4): 1 004-1 012.
|
[21] |
于文颖, 纪瑞鹏, 冯锐, 等, 2015. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应[J]. 生态学报, 35(9): 2 902-2 909.
|
[22] |
战吉宬, 黄卫东, 王秀芹, 等, 2005. 弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化[J]. 植物生态学报, 29(1): 26-31.
DOI
|
[23] |
张健, 张明, 侯云鹏, 等, 2019. 干旱胁迫对甘肃中部春小麦生理性状及灌水利用效率的影响[J]. 干旱气象, 37(1): 139-145.
DOI
|
[24] |
张仁和, 郑友军, 马国胜, 等, 2011. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J]. 生态学报, 31(5): 1 303-1 311.
|
[25] |
张文丽, 张彤, 吴冬秀, 等, 2006. 土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究[J]. 中国生态农业学报, 14(2): 72-75.
|
[26] |
赵福年, 杨红燕, 王润元, 等, 2019. 作物内禀水分利用效率变化[J]. 核农学报, 33(9): 1 873-1 881.
|
[27] |
CAI F, ZHANG Y S, MI N, et al, 2020. Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree[J]. Agricultural Water Management, 241(12): 106379. DOI: 10.1016/j.agwat.2020.106379.
|
[28] |
ENNAHLI S, EARL H J, 2005. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress[J]. Crop Science, 45(6): 2 374-2 382.
|
[29] |
FARQUHAR G D, SHARKEY T D, 1982. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 33: 317-345.
|
[30] |
GHANNOUM O, 2009. C4 photosynthesis and water stress[J]. Annals of Botany, 103(4): 635-644.
|
[31] |
HETHERINGTON A M, WOODWARD F I, 2003. The role of stomata in sensing and driving environmental change[J]. Nature, 424(6951): 901-908.
|
[32] |
JIA Y Y, XIAO W X, YE Y S, et al, 2020. Response of photosynthetic performance to drought duration and re-watering in maize[J]. Agronomy, 10(4): 533. DOI: 10.3390/agronomy 10040533.
|
[33] |
LAXA M, LIEBTHAL M, TELMAN W, et al, 2019. The role of the plant antioxidant system in drought tolerance[J]. Antioxidants, 8(4): 94. DOI: 10.3390/antiox8040094.
|
[34] |
LOBELL D B, ROBERTS M J, SCHLENKER W, et al, 2014. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest[J]. Science, 344(6183): 516-519.
DOI
PMID
|
[35] |
MEDRANO H, ESCALONA J M, BOTA J, et al, 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter[J]. Annals of Botany, 89(7): 895-905.
|
[36] |
MUKARRAM M, CHOUDHARY S, KURJAK D, et al, 2021. Drought: Sensing, signalling, effects and tolerance in higher plants[J]. Physiologia Plantarum, 172(2): 1 291-1 300.
|
[37] |
NETO M C L, CERQUEIRA J V A, DA CUNHA J R, et al, 2017. Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought[J]. Plant Biology, 19(4): 650-659.
|
[38] |
SHARMA A, ZHENG B S, 2019. Melatonin mediated regulation of drought stress: Physiological and molecular aspects[J]. Plants, 8(7): 190. DOI: 10.3390/plants8070190.
|
[39] |
SONG L B, JIN J M, HE J Q, 2019. Effects of severe water stress on maize growth processes in the field[J]. Sustainability, 11(18):5 086. DOI: 10.3390/su11185086.
|
[40] |
SONG X Y, ZHOU G S, HE Q J, et al, 2020. Stomatal limitations to photosynthesis and their critical water conditions in different growth stages of maize under water stress[J]. Agricultural Water Management, 241: 106330. DOI: 10.1016/j.agwat.2020.106330.
|
[41] |
YE Z P, LING Y, YU Q, et al, 2020. Quantifying light response of leaf-scale water use efficiency and its interrelationships with photosynthesis and stomatal conductance in C3 and C4 species[J]. Frontiers in Plant Science, 11: 374. DOI: 10.3389/fpls.2020.00374.
|