Journal of Arid Meteorology ›› 2023, Vol. 41 ›› Issue (6): 984-996.DOI: 10.11755/j.issn.1006-7639(2023)-06-0984
• Technical Reports • Previous Articles Next Articles
LI Shuping1(), QUAN Wenjie1,2, WANG Zheng3, CHEN Yizhuo1, SU Tao4(
), YAN Pengcheng5
Received:
2023-04-24
Revised:
2023-09-08
Online:
2023-12-31
Published:
2024-01-03
李淑萍1(), 全文杰1,2, 王正3, 陈奕卓1, 苏涛4(
), 颜鹏程5
通讯作者:
苏涛(1989—),副教授,主要从事气候变化与水循环研究。E-mail:作者简介:
李淑萍(1991—),博士,讲师,长期从事气候变化与模拟研究。E-mail:lishp@yzu.edu.cn。
基金资助:
CLC Number:
LI Shuping, QUAN Wenjie, WANG Zheng, CHEN Yizhuo, SU Tao, YAN Pengcheng. Evaluation of the ability of BCC-CSM2-MR global climate model in simulating precipitation and temperature in East Asia[J]. Journal of Arid Meteorology, 2023, 41(6): 984-996.
李淑萍, 全文杰, 王正, 陈奕卓, 苏涛, 颜鹏程. BCC-CSM2-MR全球气候模式对东亚地区降水和气温的模拟评估[J]. 干旱气象, 2023, 41(6): 984-996.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2023)-06-0984
区域名称 | 经度范围 | 纬度范围 |
---|---|---|
中国西北(NW) | 75°E—98°E | 36°N—43°N |
华中(CC) | 101°E—112°E | 30°N—42°N |
华北(NC) | 113°E—122°E | 30°N—41°N |
中国东北(NE) | 113°E—132°E | 42°N—55°N |
中国东南(SE) | 105°E—122°E | 18°N—28°N |
青藏高原(TB) | 75°E—98°E | 28°N—35°N |
蒙古(MG) | 92°E—112°E | 43°N—51°N |
朝鲜半岛(KP) | 125°E—130°E | 33°N—40°N |
日本(JP) | 131°E—141°E | 30°N—42°N |
Tab.1 The division of nine sub-regions in East Asia
区域名称 | 经度范围 | 纬度范围 |
---|---|---|
中国西北(NW) | 75°E—98°E | 36°N—43°N |
华中(CC) | 101°E—112°E | 30°N—42°N |
华北(NC) | 113°E—122°E | 30°N—41°N |
中国东北(NE) | 113°E—132°E | 42°N—55°N |
中国东南(SE) | 105°E—122°E | 18°N—28°N |
青藏高原(TB) | 75°E—98°E | 28°N—35°N |
蒙古(MG) | 92°E—112°E | 43°N—51°N |
朝鲜半岛(KP) | 125°E—130°E | 33°N—40°N |
日本(JP) | 131°E—141°E | 30°N—42°N |
Fig.2 The spatial distribution of seasonal mean observed precipitation (a, b, c, d) and precipitation absolute biases (only showing absolute biases that pass the significance test at α=0.05) simulated by BCC-CSM2-MR (e, f, g, h) and BCC-CSM1.1m (i, j, k, l) models in East Asia during 1981-2010 (Unit: mm·d-1) (Pm and Pmb represent regionally averaged precipitation and precipitation absolute biases in East Asia, respectively)
Fig.3 Spatial Taylor diagrams of mean precipitation simulated by BCC-CSM2-MR and BCC-CSM1.1m models in East Asia (EA) and different sub-regions in winter (a), spring (b), summer (c) and autumn (d) during 1981-2010
Fig.4 The spatial distribution of seasonal mean observed temperature (a, b, c, d) and temperature absolute biases (only showing absolute biases that pass the significance test at α=0.05) simulated by BCC-CSM2-MR (e, f, g, h) and BCC-CSM1.1m (i, j, k, l) models in East Asia during 1981-2010 (Unit: ℃) (Tm and Tmb represent regionally averaged temperature and temperature absolute biases in East Asia, respectively)
Fig.5 Spatial Taylor diagrams of mean temperature simulated by BCC-CSM2-MR and BCC-CSM1.1m models in East Asia (EA) and different sub-regions in winter (a), spring (b), summer (c) and autumn (d) during 1981-2010
Fig.8 The spatial distribution of observed daily extreme precipitation (a, b, c) (Unit: mm·d-1) and the relative biases (Unit: %) of BCC-CSM2-MR (d, e, f) and BCC-CSM1.1m (g, h, i) model simulations in China in summer during 1981-2010 (EPm and EPmb represent regionally averaged daily extreme precipitation and relative biases in China, respectively)
Fig.9 The spatial distribution of observed daily extreme temperature (a, b, c) (Unit: ℃) and the relative biases (Unit: %) of BCC-CSM2-MR (d, e, f) and BCC-CSM 1.1m (g, h, i) model simulations in China in summer during 1981-2010 (ETm and ETmb represent regionally averaged daily extreme temperature and relative biases in China, respectively)
Fig.10 Scatter plots of summer daily extreme precipitation (a, b, c) and daily extreme temperature (d, e, f) at different percentiles from the two models and station observations in China during 1981-2010 (EPmb and ETmb represent the absolute biases of mean extreme precipitation and temperature at stations in China, respectively, R2 indicates determination coefficient between observations and model simulations)
[1] | 陈炜, 姜大膀, 王晓欣, 2021. CMIP6模式对青藏高原气候的模拟能力评估与预估研究[J]. 高原气象, 40(6): 1 455-1 469. |
[2] |
陈笑晨, 唐振飞, 陈锡宽, 等, 2022. 基于CMIP6的福建省极端气温预估[J]. 干旱气象, 40(3): 415-423.
DOI |
[3] | 韩雪云, 赵丽, 张倩, 等, 2019. 西北干旱区极端高温时空变化特征分析[J]. 沙漠与绿洲气象, 13(4): 17-23. |
[4] |
郝立生, 马宁, 何丽烨, 2022. 2022年长江中下游夏季异常干旱高温事件之环流异常特征[J]. 干旱气象, 40(5): 721-732.
DOI |
[5] | 何金海, 赵平, 祝从文, 等, 2008. 关于东亚副热带季风若干问题的讨论[J]. 气象学报, 66(5): 683-696. |
[6] |
林纾, 李红英, 黄鹏程, 等, 2022. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 40(5): 748-763.
DOI |
[7] | 申燕玲, 肖宏斌, 肖宏斌, 等, 2021. 冷湖地区气象要素变化及其对天文观测的影响[J]. 沙漠与绿洲气象, 15(3): 110-116. |
[8] | 孙颖, 丁一汇, 2009. 未来百年东亚夏季降水和季风预测的研究[J]. 中国科学: D辑地球科学, 39(11): 1 487-1 504. |
[9] | 谭洁, 黄安宁, 史学丽, 等, 2022. BCC-CSM2-MR模式对中国陆面过程模拟能力评估[J]. 高原气象, 41(5): 1 335-1 347. |
[10] | 吴佳, 高学杰, 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 56(4): 1 102-1 111. |
[11] | 辛晓歌, 吴统文, 张洁, 等, 2019. BCC模式及其开展的CMIP6试验介绍[J]. 气候变化研究进展, 15(5): 533-539. |
[12] |
许婷婷, 杨霞, 周鸿奎, 2022. 1981—2019年新疆区域性高温天气过程时空特征及其环流分型[J]. 干旱气象, 40(2): 212-221.
DOI |
[13] | 周天军, 吴波, 郭准, 等, 2018. 东亚夏季风变化机理的模拟和未来变化的预估:成绩和问题、机遇和挑战[J]. 大气科学, 42(4): 902-934. |
[14] | 周天军, 邹立维, 陈晓龙, 2019. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 15(5): 445-456. |
[15] | 周天军, 陈梓明, 邹立维, 等, 2020. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报, 78(3): 332-350. |
[16] | CHEN H P, SUN J Q, LIN W Q, et al, 2020. Comparison of CMIP6 and CMIP5 models in simulating climate extremes[J]. Science Bulletin, 65(17): 1 415-1 418. |
[17] | EYRING V, BONY S, MEEHL G A, et al, 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 9(5): 1 937-1 958. |
[18] | GAO S, MAO J L, ZHANG W, et al, 2021. Atmospheric moisture shapes increasing tropical cyclone precipitation in Southern China over the past four decades[J]. Environmental Research Letters, 16(3), 034004. DOI: 10.1088/1748-9326/abd78a. |
[19] | GIORGI F, JONES C, ASRAR G R, 2009. Addressing climate information needs at the regional level: the CORDEX framework[J]. World Meteorological Organization (WMO) Bulletin, 58(3): 175-183. |
[20] | FU C B, ZHENG Z M, 1998. Monsoon regions: the highest rate of precipitation changes observed from global data[J]. Chinese Science Bulletin, 43(8): 662-666. |
[21] | HASLINGER K, ANDERS I, HOFSTÄTTER M, 2013. Regional climate modelling over complex terrain: an evaluation study of COSMO-CLM hindcast model runs for the Greater Alpine region[J]. Climate Dynamics, 40(1): 511-529. |
[22] | HARRIS I, OSBORN T J, JONES P, et al, 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 7(1), 109. DOI: 10.1038/s41597-020-0453-3. |
[23] | HEIM C, PANOSETTI D, SCHLEMMER L, et al, 2020. The influence of the resolution of orography on the simulation of orographic moist convection[J]. Monthly Weather Review, 148(6): 2 391-2 410. |
[24] | IPCC, 2021. Climate Change 2021:The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M/OL]. United Kinodom and New York, NY USA: Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/. |
[25] | JIANG D B, TIAN Z P, LANG X M, 2016. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports[J]. International Journal of Climatology, 36(3): 1 114-1 133. |
[26] | LANGHANS W, SCHMIDLI J, SCHÄR C, 2012. Bulk convergence of cloud-resolving simulations of moist convection over complex terrain[J]. Journal of the Atmospheric Sciences, 69(7): 2 207-2 228. |
[27] | LI D H, ZHOU T J, ZOU L W, et al, 2018. Extreme high-temperature events over East Asia in 1.5 ℃ and 2 ℃ warmer futures: analysis of NCAR CESM low-warming experiments[J]. Geophysical Research Letters, 45(3): 1 541-1 550. |
[28] | LI S P, SU T, YAN P C, et al, 2023. The role of SST forcing in the interdecadal variations of the Pacific-Japan pattern in the late 1990s[J]. International Journal of Climatology, 43(3): 1 514-1 528. |
[29] |
LI T, WANG Y H, WANG B, et al, 2022. Distinctive South and East Asian monsoon circulation responses to global warming[J]. Science Bulletin, 67(7): 762-770.
DOI PMID |
[30] | LU K D, ARSHAD M, MA X Y, et al, 2022. Evaluating observed and future spatiotemporal changes in precipitation and temperature across China based on CMIP6-GCMs[J]. International Journal of Climatology, 42(15): 7 703-7 729. |
[31] | PEI Y F, SONG M H, MA X L, et al, 2022. Simulation assessment and prediction of future temperatures in Northwest China from BCC-CSM Model[J]. Sciences in Cold and Arid Regions, 14(2): 138-150. |
[32] |
STOUFFER R J, EYRING V, MEEHL G A, et al, 2017. CMIP5 scientific gaps and recommendations for CMIP6[J]. Bulletin of the American Meteorological Society, 98(1): 95-105.
DOI |
[33] | XIN X G, WU T W, ZHANG J, et al, 2020. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon[J]. International Journal of Climatology, 40(15): 6 423-6 440. |
[34] | WANG B, LIN H, 2002. Rainy season of the Asian-Pacific summer monsoon[J]. Journal of Climate, 15(4): 386-398. |
[35] | WANG C Z, ZHANG L P, LEE S K, et al, 2014. A global perspective on CMIP5 climate model biases[J]. Nature Climate Change, 4: 201-205. |
[36] | WU T W, LI W P, JI J J, et al, 2013. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century[J]. Journal of Geophysical Research-Atmospheres, 118(10): 4 326-4 347. |
[37] | WU T W, LU Y X, FANG Y J, et al, 2019. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development, 12(4): 1 573-1 600. |
[38] | YANG X L, ZHOU B T, XU Y, et al, 2021. CMIP6 evaluation and projection of temperature and precipitation over China[J]. Advances in Atmospheric Sciences, 38(5): 817-830. |
[39] | ZHOU W D, TANG J P, WANG X Y, et al, 2016. Evaluation of regional climate simulations over the CORDEX-EA-II domain using the COSMO-CLM model[J]. Asia-Pacific Journal of Atmospheric Sciences, 52(2): 107-127. |
[40] | ZOU L W, ZHOU T J, PENG D D, 2016. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations[J]. Journal of Geophysical Research-Atmospheres, 121(4): 1 442-1 458. |
[1] | LU Xiaojuan, WANG Zhilan, ZHANG Jinyu, WANG Yun, WANG Lijuan, HU Die, SHA Sha, WANG Suping, LI Yiping. The synergistic effect of sea temperature and MJO on spring drought in southwestern China in 2023 [J]. Journal of Arid Meteorology, 2024, 42(2): 166-179. |
[2] | LIU Wenying, SUN Suqin, ZHU Xingqiu, OUYANG Xinxin. Analysis and assessment of regional high temperature and drought processes in Jiangxi Province [J]. Journal of Arid Meteorology, 2024, 42(2): 187-196. |
[3] | GAO Zhiwei, LIU Jia, CHEN Yan, Zhong Aihua. Exploration of the hysteresis response characteristics of precipitation in China to tropical Pacific sea surface temperature [J]. Journal of Arid Meteorology, 2024, 42(2): 209-216. |
[4] | HUANG Yao, YUAN Meng, GUO Jie, SONG Wenwen, LIU Xinchao. Synoptic circulation patterns clustering analysis and physical diagnosis of high temperature weather in the lower reaches of the Jinsha River [J]. Journal of Arid Meteorology, 2024, 42(2): 217-227. |
[5] | QIU Jinjing, CHEN Feng, DONG Meiying, FAN Yuemin, YU Zhenshou. Research on improvement of temperature forecasts of the regional numerical prediction system using CLDAS land data [J]. Journal of Arid Meteorology, 2024, 42(2): 238-250. |
[6] | ZHANG Tiening, SUN Li, ZHAO Shuhui, KANG Boshi, ZHANG Mengjia. Application evaluation of the GPM DPR products in two types of precipitation processes in northeast China [J]. Journal of Arid Meteorology, 2024, 42(2): 251-262. |
[7] | LIU Juju, ZHAO Qiang, JING Yu, ZHANG Weiran, DAI Changming. Suitability assessment of CMA multi-source precipitation analysis products for short-term heavy rainfall monitoring in Shaanxi [J]. Journal of Arid Meteorology, 2024, 42(2): 263-273. |
[8] | JIAO Yang, ZHENG Lina, ZHANG Yongjing, SU Yi. Correction of ECMWF ensemble average precipitation forecast using two objective precipitation statistical methods [J]. Journal of Arid Meteorology, 2024, 42(2): 293-304. |
[9] | WANG Binyan, WANG Jiajin, XIAO Dixiang, LONG Keji. Evaluation of forecasting ability of four numerical models for heavy precipitation processes in Sichuan Province [J]. Journal of Arid Meteorology, 2024, 42(2): 315-323. |
[10] | WANG Sheng, ZHANG Qiang, ZHANG Liang, WANG Xing, DU Haoling, ZENG Jian, WEN Xiaomei. Research progress and prospect on non-precipitition water in arid and semi-arid area [J]. Journal of Arid Meteorology, 2024, 42(1): 1-10. |
[11] | LIU Wei, ZHAO Yanli, GAO Jing, LI Linhui, WANG Huimin. Cause analysis of flood-drought alternation event in July 2022 in arid and semi-arid region of Inner Mongolia [J]. Journal of Arid Meteorology, 2024, 42(1): 11-18. |
[12] | SHA Sha, WANG Lijuan, WANG Xiaoping, HU Die, ZHANG Liang. Study on monitoring method of agricultural drought in Gansu Province based on Temperature Vegetation Dryness Index [J]. Journal of Arid Meteorology, 2024, 42(1): 27-38. |
[13] | GUO Yinan, HUANG Zhicheng, DU Jun, XU Wei. Variation characteristics of agricultural boundary temperature in main agricultural regions in basins of the Brahmaputra River and its two tributaries in Xizang from 1981 to 2022 [J]. Journal of Arid Meteorology, 2024, 42(1): 47-53. |
[14] | HAN Shiru, CHE Shaojing, YU Changwen, MA Guidong. Characteristics of 10-20 days low-frequency oscillation of autumn precipitation over the Beijing-Tianjin-Hebei region in 2021 [J]. Journal of Arid Meteorology, 2024, 42(1): 54-63. |
[15] | DONG Jingwei, WEN Lijuan, YU Tao, YANG Yongshun, LUO Ying, WANG Mengxiao, NIU Ruijia. Prediction of the future temperature in Qinghai Lake [J]. Journal of Arid Meteorology, 2024, 42(1): 64-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com