Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (1): 27-38.DOI: 10.11755/j.issn.1006-7639(2024)-01-0027
• Articles • Previous Articles Next Articles
SHA Sha(), WANG Lijuan(
), WANG Xiaoping, HU Die, ZHANG Liang
Received:
2022-06-28
Revised:
2023-09-25
Online:
2024-02-29
Published:
2024-03-06
通讯作者:
王丽娟(1986—),女,四川广安人,副研究员,博士,主要从事卫星遥感研究。E-mail: wanglijuan01@126.com。
作者简介:
沙莎(1985—),女,汉族,辽宁沈阳人,副研究员,硕士,主要从事GIS、遥感的气象应用研究。E-mail: nuist_shasha@126.com。
基金资助:
CLC Number:
SHA Sha, WANG Lijuan, WANG Xiaoping, HU Die, ZHANG Liang. Study on monitoring method of agricultural drought in Gansu Province based on Temperature Vegetation Dryness Index[J]. Journal of Arid Meteorology, 2024, 42(1): 27-38.
沙莎, 王丽娟, 王小平, 胡蝶, 张良. 基于温度植被干旱指数(TVDI)的甘肃省农业干旱监测方法研究[J]. 干旱气象, 2024, 42(1): 27-38.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2024)-01-0027
植被指数 | 计算公式 |
---|---|
NDVI | |
EVI | (Liu and Huete, |
SAVI | |
RVI_b2b1 | |
RVI_b2b7 | |
NDWI |
Tab.1 Calculation formulas of vegetation indexes
植被指数 | 计算公式 |
---|---|
NDVI | |
EVI | (Liu and Huete, |
SAVI | |
RVI_b2b1 | |
RVI_b2b7 | |
NDWI |
Fig.3 Monthly variation of correlation coefficient between TVDI constructed by multi-time method(the left) and single-time method(the right) and RSM at 10 cm depth
构建方法 | 气候分区 | NDVI特征空间 | EVI特征空间 | SAVI特征空间 | RVI_b2b1特征空间 | ||||
---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||
多时次方法 | 干旱区 | -0.12 | 0.38 | -0.01 | 0.46 | -0.10 | 0.37 | -0.03 | 0.45 |
半干旱区 | -0.32 | 0.09 | -0.27 | 0.14 | -0.34* | 0.09* | -0.30 | 0.16 | |
半湿润区 | -0.36 | 0.05 | -0.28 | 0.14 | -0.38* | 0.03* | -0.30 | 0.10 | |
湿润区 | -0.26 | 0.08 | -0.24 | 0.16 | -0.29* | 0.02* | -0.17 | 0.34 | |
单时次方法 | 干旱区 | -0.09 | 0.45 | -0.03 | 0.39 | -0.09 | 0.42 | 0.01 | 0.47 |
半干旱区 | -0.26 | 0.10 | -0.26 | 0.15 | -0.29 | 0.09 | -0.28 | 0.14 | |
半湿润区 | -0.32 | 0.04 | -0.31 | 0.07 | -0.32 | 0.14 | -0.27 | 0.16 | |
湿润区 | -0.22 | 0.15 | -0.27 | 0.11 | -0.26 | 0.08 | -0.15 | 0.35 |
Tab.2 Temporal correlation statistics between TVDI for different feature space and monthly RSM at 10 cm depth time series from 2003 to 2012 in different climatic regions
构建方法 | 气候分区 | NDVI特征空间 | EVI特征空间 | SAVI特征空间 | RVI_b2b1特征空间 | ||||
---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||
多时次方法 | 干旱区 | -0.12 | 0.38 | -0.01 | 0.46 | -0.10 | 0.37 | -0.03 | 0.45 |
半干旱区 | -0.32 | 0.09 | -0.27 | 0.14 | -0.34* | 0.09* | -0.30 | 0.16 | |
半湿润区 | -0.36 | 0.05 | -0.28 | 0.14 | -0.38* | 0.03* | -0.30 | 0.10 | |
湿润区 | -0.26 | 0.08 | -0.24 | 0.16 | -0.29* | 0.02* | -0.17 | 0.34 | |
单时次方法 | 干旱区 | -0.09 | 0.45 | -0.03 | 0.39 | -0.09 | 0.42 | 0.01 | 0.47 |
半干旱区 | -0.26 | 0.10 | -0.26 | 0.15 | -0.29 | 0.09 | -0.28 | 0.14 | |
半湿润区 | -0.32 | 0.04 | -0.31 | 0.07 | -0.32 | 0.14 | -0.27 | 0.16 | |
湿润区 | -0.22 | 0.15 | -0.27 | 0.11 | -0.26 | 0.08 | -0.15 | 0.35 |
农业干旱等级 | 6月 | 7月 | 8月 |
---|---|---|---|
无旱 | TVDI<0.54 | TVDI<0.52 | TVDI<0.52 |
轻旱 | 0.54≤TVDI<0.62 | 0.52≤TVDI<0.63 | 0.52≤TVDI<0.59 |
中旱 | 0.62≤TVDI<0.70 | 0.63≤TVDI<0.75 | 0.59≤TVDI<0.65 |
重旱 | 0.70≤TVDI<0.78 | 0.75≤TVDI<0.87 | 0.65≤TVDI<0.72 |
特旱 | TVDI≥0.78 | TVDI≥0.87 | TVDI≥0.72 |
Tab.4 Agricultural drought grade thresholds based on TVDI in summer in Gansu Province
农业干旱等级 | 6月 | 7月 | 8月 |
---|---|---|---|
无旱 | TVDI<0.54 | TVDI<0.52 | TVDI<0.52 |
轻旱 | 0.54≤TVDI<0.62 | 0.52≤TVDI<0.63 | 0.52≤TVDI<0.59 |
中旱 | 0.62≤TVDI<0.70 | 0.63≤TVDI<0.75 | 0.59≤TVDI<0.65 |
重旱 | 0.70≤TVDI<0.78 | 0.75≤TVDI<0.87 | 0.65≤TVDI<0.72 |
特旱 | TVDI≥0.78 | TVDI≥0.87 | TVDI≥0.72 |
Fig.6 Comparison of drought distribution based on TVDI classified according to the table 4(the left),in 0.2 intervals(the middle) and TVDI without classification(the right) and RSM in summer of 2005 in Gansu Province
Fig.8 Drought grade map based on TVDI in June(a),July(c) and August(e) and the actual measured relative soil moisture values of 0-30 cm depth on June 16(b),July 16(d) and August 16(f) of 2016
[1] | 鲍文中, 2018. 甘肃气候[M]. 北京: 气象出版社. |
[2] | 陈少丹, 张利平, 汤柔馨, 等, 2017. 基于SPEI和TVDI的河南省干旱时空变化分析[J]. 农业工程学报, 33(24): 126-132. |
[3] | 陈燕丽, 唐梅蓉, 张会, 等, 2022. 广西喀斯特地区植被覆盖度和净初级生产力对SPEI干旱指数的响应差异[J]. 干旱气象, 40(6): 1 042-1 050. |
[4] | 邓振镛, 谢金南, 刘德祥, 等, 1998. 甘肃气候资源特点与开发利用[J]. 甘肃气象, 17(2): 16-19. |
[5] | 邓振镛, 张强, 赵红岩, 等, 2012. 气候暖干化对西北四省(区)农业种植结构的影响及调整方案[J]. 高原气象, 31(2): 498-503. |
[6] |
郭铌, 王小平, 2015. 遥感干旱应用技术进展及面临的技术问题与发展机遇[J]. 干旱气象, 33(1): 1-18.
DOI |
[7] |
韩兰英, 张强, 赵红岩, 等, 2016. 甘肃省农业干旱灾害损失特征及其对气候变暖的响应[J]. 中国沙漠, 36(3): 767-776.
DOI |
[8] | 贾生海, 张虎如, 1997. 河西灌溉农业的演变[J]. 干旱地区农业研究, 15(2): 115-120. |
[9] | 康为民, 罗宇翔, 向红琼, 等, 2010. 贵州喀斯特山区的NDVI-Ts特征及其干旱监测应用研究[J]. 气象, 36(10): 78-83. |
[10] | 林纾, 李红英, 党冰, 等, 2014. 甘肃河西走廊地区气候暖湿转型后的最新事实[J]. 冰川冻土, 36(5): 1 111-1 121. |
[11] |
林纾, 李红英, 黄鹏程, 等, 2022. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 40(5): 748-763.
DOI |
[12] | 刘一哲, 冯文兰, 扎西央宗, 等, 2020. 基于MODIS TVDI和模糊数学方法的藏北地区旱情等级遥感监测[J]. 干旱区研究, 37(1): 86-96. |
[13] | 李春强, 李红军, 2008. TVDI在冬小麦春季干旱监测中的应用[J]. 遥感技术与应用, 23(2): 161-165. |
[14] | 陆登荣, 黄斌, 王劲松, 2011. 甘肃河东雨养农业区旬降水变化及其与土壤湿度关系[J]. 干旱地区农业研究, 29(2): 230-235. |
[15] | 卢远, 华璀, 韦燕飞, 2007. 利用MODIS数据进行旱情动态监测研究[J]. 地理与地理信息科学, 23(3): 55-58. |
[16] |
沙莎, 郭铌, 李耀辉, 等, 2014. 我国温度植被旱情指数TVDI的应用现状及问题简述[J]. 干旱气象, 32(1): 128-134.
DOI |
[17] | 沙莎, 胡蝶, 王丽娟, 等, 2023. 河南省土壤水分遥感监测方法研究[J]. 气象与环境科学, 46(1) : 91-99. |
[18] | 商沙沙, 廉丽姝, 马婷, 等, 2018. 近54 a中国西北地区气温和降水的时空变化特征[J]. 干旱区研究, 35(1): 68-76. |
[19] |
王丽娟, 郭铌, 沙莎, 等, 2016. 混合像元对遥感干旱指数监测能力的影响[J]. 干旱气象, 34(5): 772-778.
DOI |
[20] |
王莹, 张舒, 徐永清, 等, 2023. 近50 a黑龙江省5—9月气象干旱及大气环流异常特征[J]. 干旱气象, 41(4): 540-549.
DOI |
[21] | 伍漫春, 丁建丽, 王高峰, 2012. 基于地表温度-植被指数特征空间的区域土壤水分反演[J]. 中国沙漠, 32(1): 148-154. |
[22] |
薛亮, 袁淑杰, 王劲松, 2023. 我国不同区域气象干旱成因研究进展与展望[J]. 干旱气象, 41(1): 1-13.
DOI |
[23] | 徐先英, 2019. 甘肃治沙研究60年回顾与展望[J]. 甘肃林业,(4): 9-21. |
[24] | 杨曦, 武建军, 闫峰, 等, 2009. 基于地表温度-植被指数特征空间的区域土壤干湿状况[J]. 生态学报, 29(3): 1 205-1 216. |
[25] | 杨小利, 杨兴国, 2007. 甘肃黄土高原气象旱度模式研究[J]. 自然灾害学报, 16(5): 30-36. |
[26] | 余兴湛, 蒲义良, 康伯乾, 2022. 基于SPEI的广东省近50 a干旱时空特征[J]. 干旱气象, 40(6): 1 051-1 058. |
[27] | 张强, 胡隐樵, 曹晓彦, 等, 2000. 论西北干旱气候的若干问题[J]. 中国沙漠, 20(4): 357-362. |
[28] |
张喆, 丁建丽, 李鑫, 等, 2015. TVDI用于干旱区农业旱情监测的适宜性[J]. 中国沙漠, 35(1): 220-227.
DOI |
[29] | 国家气候中心, 中国气象科学研究院, 国家气象中心, 等, 2006. 中华人民共和国国家标准GB/T 20481—2006: 气象干旱等级[S]. 北京: 中国标准出版社: 11. |
[30] | BIRTH G S, MCVEY G R, 1968. Measuring the color of growing turf with a reflectance spectrophotometer[J]. Agronomy Journal, 60(6): 640-643. |
[31] | CHEN J, WANG C Z, JIANG H, et al, 2011. Estimating soil moisture using Temperature-Vegetation Dryness Index (TVDI) in the Huang-huai-hai (HHH) plain[J]. International Journal of Remote Sensing, 32(4): 1 165-1 177. |
[32] | DU L, SONG N, LIU K, et al, 2017. Comparison of two simulation methods of the Temperature Vegetation Dryness Index (TVDI) for drought monitoring in semi-arid regions of China[J]. Remote Sensing, 9(2): 177-196. |
[33] | GAO B C, 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 58(3): 257-266. |
[34] | GOETZ S J, 1997. Multi-sensor analysis of NDVI and surface temperature and biophysical variables as a mixed grassland site[J]. International Journal of Remote Sensing, 18(1): 71-94. |
[35] | GOWARD S N, HOPE A S, 1989. Evapotranspiration from combined reflected solar and emitted terrestrial radiation:preliminary FIFE results from AVHRR data[J]. Advances in Space Research, 9(7): 239-249. |
[36] | GU Y, BROWN J F, VERDIN J P, et al, 2007. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States[J]. Geophysical Research Letters, 34(6), L06407. DOI: 10.1029/2006GL029127. |
[37] | GU Y, HUNY E, WARDLOW B, et al, 2008. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data[J]. Geophysical Research Letters, 35(22), L22401. DOI: 10.1029/2008GL035772. |
[38] | HAN Y, WANG Y Q, ZHAO Y S, 2010. Estimating soil moisture conditions of the Greater Changbai Mountains by Land Surface Temperature and NDVI[J]. IEEE Transactions on Geoscience and remote sensing, 48(6): 2 509-2 515. |
[39] | HUETE A R, 1988. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 25(3): 295-309. |
[40] | LI H, LI C, LIN Y, et al, 2010. Surface temperature correction in TVDI to evaluate soil moisture over a large area[J]. Journal of Food, Agriculture & Environment, 8(3): 1 141-1 145. |
[41] | LIU H, HUETE A, 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 33(2): 457-465. |
[42] | NEMANI R, PIERCE L, RUNNING S, et al, 1993. Developing satellite-derived estimates of surface moisture status[J]. Journal of Applied Meteorology, 32(3): 548-557. |
[43] | SANDHOLT I, RASMUSSEN K, ANDERSEN J, 2002. A simple interpretation of the surface temperature-vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 79(2): 213-224. |
[44] | WANG H, HE N, ZHAO R, et al, 2020. Soil water content monitoring using joint application of PDI and TVDI drought indices[J]. Remote Sensing Letters, 11(5): 455-464. |
[45] | ZORMAND S, JAFARI R, KOUPAEI S S, 2017. Assessment of PDI, MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands[J]. Natural Hazards, 86(2): 757-777. |
[1] | ZHU Li, LYU Xiaoyu, GUO Hao, MENG Xiangchen, TIAN Yunfei. Suitability study of ERA5-Land precipitation product for drought monitoring in the Yellow River Basin [J]. Journal of Arid Meteorology, 2023, 41(5): 677-687. |
[2] | ZHAO Hong, CAI Dihua, WANG Heling, YANG Yang, WANG Runyuan, ZHANG Kai, QI Yue, ZHAO Funian, CHEN Fei, YUE Ping, WANG Xing, YAO Yubi, LEI Jun, WEI Xingxing. Progress and prospect on impact of drought disaster on food security and its countermeasures [J]. Journal of Arid Meteorology, 2023, 41(2): 187-206. |
[3] | WANG Ying, ZHANG Qiang, WANG Jinsong, HAN Lanying, WANG Suping, ZHANG Liang, YAO Yubi, HAO Xiaocui, WANG Sheng. New progress and prospect of drought research since the 21st century [J]. Journal of Arid Meteorology, 2022, 40(4): 549-566. |
[4] | HU Die, SHA Sha, WANG Lijuan, WANG Wei. Drought Monitoring Applications of the European Space Agency Climate Change Initiative Soil Moisture Combined Product in Gansu Province [J]. Journal of Arid Meteorology, 2019, 37(4): 517-528. |
[5] | WANG Siqi, ZHANG Xiang, CHEN Nengcheng, ZHOU Jiaxiang, HU Chuli, PENG Xiaoting. Monitoring and Comparison of Drought in Five Provinces of the Middle and Lower Reaches of the Yangtze River Based on the Multiple Drought Indices [J]. Journal of Arid Meteorology, 2019, 37(2): 209-217. |
[6] | LIU Kai, SUN Li, SUN Haiyue, XUE Wanqing, ZHAI Guanghui. Drought Monitoring in Winter Wheat Planting Area of China Based on FY-3C Microwave Data [J]. Journal of Arid Meteorology, 2017, 35(6): 918-925. |
[7] | . Drought Monitoring Based on TRMM Precipitation Data in Gansu Province [J]. Journal of Arid Meteorology, 2017, 35(3): 374-. |
[8] | CAO Zhangchi,SHEN Runping,TIAN Ye,LI Feng. Research on Soil Moisture Monitoring Using MODIS Data During the Drought/Wet Conversion Period in Shandong Province [J]. Journal of Arid Meteorology, 2014, 32(3): 340-345. |
[9] | WANG Xiao-Beng, ZHANG Mou-Cao, GUO Hai-Yang, WANG Ning-Zhen, HUANG Bin. A Test on the Monitoring of Soil Moisture with CE312 Infrared and CE313 Visible and Near Infrared Radiometers [J]. J4, 2005, 23(4): 57-60. |
[10] | WANG Xiao-Beng, GUO Ni. Some Research Advances and Methods on Drought Monitoring By Remote Sensing [J]. J4, 2003, 21(4): 76-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com