Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (4): 536-552.DOI: 10.11755/j.issn.1006-7639(2024)-04-0536
• Articles • Previous Articles Next Articles
ZHANG Cunjie(), ZHANG Siqi, NING Huifang
Received:
2024-05-13
Revised:
2024-07-10
Online:
2024-08-31
Published:
2024-09-13
作者简介:
张存杰(1966—),男,研究员,主要从事气候变化和干旱监测预警研究。E-mail:zhangcj@cma.gov.cn。
基金资助:
CLC Number:
ZHANG Cunjie, ZHANG Siqi, NING Huifang. Trends of extreme weather and climate events in China in recent 60 years and their characteristics in 2023[J]. Journal of Arid Meteorology, 2024, 42(4): 536-552.
张存杰, 张思齐, 宁惠芳. 近60 a中国极端天气气候事件变化趋势及2023年特征分析[J]. 干旱气象, 2024, 42(4): 536-552.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2024)-04-0536
序号 | 指标名称 | 指标含义 |
---|---|---|
1 | 极端高温事件 | 日最高气温超过第90个百分位的阈值 |
2 | 极端低温事件 | 日最低气温不超过第10个百分位的阈值 |
3 | 极端干旱事件 | 过去90 d的SPI值达到重旱以上程度 |
4 | 极端降水事件 | 3 d降水量超过第90个百分位的阈值,且3 d降水量不低于30 mm |
5 | 极端台风降水事件 | 台风日降水量超过第90个百分位的阈值 |
6 | 极端台风风速事件 | 台风日最大风速超过第90个百分位的阈值 |
Tab.1 Discriminant index and meaning of different extreme events
序号 | 指标名称 | 指标含义 |
---|---|---|
1 | 极端高温事件 | 日最高气温超过第90个百分位的阈值 |
2 | 极端低温事件 | 日最低气温不超过第10个百分位的阈值 |
3 | 极端干旱事件 | 过去90 d的SPI值达到重旱以上程度 |
4 | 极端降水事件 | 3 d降水量超过第90个百分位的阈值,且3 d降水量不低于30 mm |
5 | 极端台风降水事件 | 台风日降水量超过第90个百分位的阈值 |
6 | 极端台风风速事件 | 台风日最大风速超过第90个百分位的阈值 |
Fig.2 Annual change curves and linear trends of occurring numbers of multiple extreme events (a), extreme high-temperature and low-temperature events (b), extreme drought events and extreme precipitation events (c), extreme typhoon wind speed events and extreme typhoon precipitation events and the sum of them (d) during 1961-2023 in China
Fig.3 Annual change curves and linear trends of occurring numbers of multiple extreme events (a), extreme high-temperature and low-temperature events (b), extreme drought events and extreme precipitation events (c), extreme typhoon wind speed events and extreme typhoon precipitation events and the sum of them (d) during 1961-2023 in East China
Fig.4 Annual change curves and linear trends of occurring numbers of multiple extreme events (a), extreme high-temperature and low-temperature events (b), extreme drought and extreme precipitation events (c), extreme typhoon wind speed events and extreme typhoon precipitation events and the sum of them (d) during 1961-2023 in South China
Fig.5 Annual change curves and linear trends of occurring numbers of multiple extreme events (a), extreme high-temperature and low-temperature events (b), extreme drought events and extreme precipitation events (c), extreme typhoon wind speed events and extreme typhoon precipitation events and the sum of them (d) during 1961-2023 in Central China
Fig.6 Annual change curves and linear trends of occurring numbers of multiple extreme events (a), extreme high-temperature and low-temperature events (b), extreme drought events and extreme precipitation events (c), extreme typhoon wind speed events and extreme typhoon precipitation events and the sum of them (d) during 1961-2023 in Southwest China
Fig.7 Annual change curves and linear trends of occurring numbers of multiple extreme events (a), extreme high-temperature and low-temperature events (b), extreme drought events (c) and extreme precipitation events (d) during 1961-2023 in Northeast China
Fig.8 Annual change curves and linear trends of occurring numbers of multiple extreme events (a), extreme high-temperature and low-temperature events (b), extreme drought events (c) and extreme precipitation events (d) during 1970-2023 in North China
Fig.9 Annual change curves and linear trends of occurring numbers of multiple extreme events (a), extreme high-temperature and low-temperature events (b), extreme drought events (c) and extreme precipitation events (d) during 1961-2023 in Northwest China
Fig.10 The spatial distribution of occurring numbers of all extreme events in 2023 (a) and its anomaly compared to the average values during 1991-2020 (b) in China
Fig.11 The spatial distribution of occurring numbers (a, c, e) in 2023 and anomalies ( b, d, f) of extreme high temperature events (a, b), extreme low temperature events (c, d), extreme precipitation events (e, f) compared to the average values during 1991-2020 in China
Fig.12 The spatial distribution of occurring numbers in 2023 (a, c) and their anomalies (b, d) of extreme drought events (a, b) and extreme typhoon events (c, d) compared to the average values during 1991-2020 (b) in China
Fig.13 The spatial distributions of annual average MXCI in China from 1991 to 2020 (a), the linear trend of MXCI from 1961 to 2023 (b), the MXCI in 2023 (c) and its anomaly (d) in China
[1] | 第四次气候变化国家评估报告编写委员会, 2022. 第四次气候变化国家评估报告[R]. 北京: 科学出版社: 41-48. |
[2] | 丁一汇, 2008. 中国气象灾害大典(综合卷)[M]. 北京: 气象出版社: 1-21. |
[3] | 郝立生, 何丽烨, 马宁, 等, 2023. 厄尔尼诺事件年际变化与我国华北夏季干旱的关系[J]. 干旱气象, 41(6): 829-840. |
[4] | 解明恩, 陈鲜艳, 张文千, 等, 2022. 雨涝指数在云南洪涝灾害监测中的应用[J]. 灾害学, 37(3): 77-83. |
[5] | 刘南江, 冯爱青, 张鹏, 等, 2023. 2023年西南地区冬春连旱时空特征及防范应对建议[J]. 中国防汛抗旱, 33(7): 16-20. |
[6] | 么枕生, 丁裕国, 1990. 气候统计[M]. 北京: 气象出版社: 11-93. |
[7] | 秦大河, 2015. 中国极端气候事件和灾害风险管理及适应国家评估报告[R]. 北京: 科学出版社: 47-57. |
[8] | 秦大河, 翟盘茂, 2021. 中国气候与生态环境演变(2021): 第一卷科学基础[M]. 北京: 科学出版社: 433-470. |
[9] | 孙林海, 赵琳, 李威, 等, 2023. 2023年华北、黄淮极端高温热浪事件气候特征及成因初探[J]. 中国防汛抗旱, 33(11): 8-12. |
[10] |
吴绍洪, 潘韬, 刘燕华, 等, 2017. 中国综合气候变化风险区划[J]. 地理学报, 72(1): 3-17.
DOI |
[11] | 严中伟, 2010. 气候极值[M]//“10 000个科学难题”地球科学编委会. 10 000个科学难题·地球科学卷. 北京: 科学出版社: 828-833. |
[12] | 杨坤, 王薇, 罗伟儿, 等, 2023. 无人机遥感应急监测高效应对台风“杜苏芮”引发的洪涝灾害[J]. 防汛救灾, 10(1): 16-17. |
[13] | 杨舒楠, 张芳华, 胡艺, 等. 2023. “23·7”华北特大暴雨过程的基本特征与成因初探[J]. 暴雨灾害, 42(5): 508-520. |
[14] | 杨溯, 李庆祥, 2014. 中国降水量序列均一性分析方法及数据集更新完善[J]. 气候变化研究进展, 10(4): 276-281. |
[15] | 尹宜舟, 黄建斌, 朱志存, 等, 2018. 我国沿海主要省份热带气旋风雨因子危险性分析II:年代际变化特征[J]. 热带气象学报, 34(2): 153-161. |
[16] | 全国气候与气候变化标准化技术委员会, 2017. 气象干旱等级: GB/T 20481—2017[S]. 北京: 中国标准出版社: 1-35. |
[17] | 张存杰, 肖潺, 李帅, 等. 2023. 极端气候事件综合危险性等级指标构建及近60年来长江流域极端气候综合分析[J]. 地球物理学报, 66(3): 920-938. |
[18] | 张强, 姚玉璧, 李耀辉, 等, 2020. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 78(3):500-521. |
[19] | 张强, 张存杰, 白虎志, 等, 2010. 西北地区气候变化新动态及对干旱环境的影响——总体暖干化,局部出现暖湿迹象[J]. 干旱气象, 28(1): 1-7. |
[20] | 赵宗慈, 罗勇, 黄建斌, 2023. 全球变暖与热带气旋[J]. 气候变化研究进展, 19(6): 823-826. |
[21] | 中国气象局, 2024. 2023年中国气候公报[R/OL].(2024-02-23)[2024-06-08]. https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202402/t20240223_6084527.html. |
[22] | CAO L J, ZHU Y N, YUAN F, et al, 2016. Climatic warming in China according to a homogenized data set from 2419 stations[J]. International Journal of Climatology, 36: 4 384-4 392. https://doi.org/10.1002/joc.4639. |
[23] | IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change[M]. Cambridge and New York: Cambridge University Press:582. |
[24] | IPCC, 2021. Climate change 2021 the physical science basis[M]. Cambridge and New York: Cambridge University Press. |
[25] | KLEIN TANK A M G, ZWIERS F W, ZHANG X B, 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation[R]// World Meteorological Organization. Climate Data and Monitoring WCDMP-No. 72, 56. Geneva:World Meteorological Organization. |
[26] | REN F M, CUI D, GONG Z, et al, 2012. An objective identification technique for regional extreme events[J]. Journal of Climate, 25(20): 7 015-7 027. |
[27] | WMO, 2024a. State of the Global Climate 2023[M/OL]// WMO. WMO-No.1347. Geneva: WMO. (2024-3-19)[2024-06-18]. https://library.wmo.int/idurl/4/68835. |
[28] | WMO, 2024b. State of the Climate in Asia 2023[M]// WMO. WMO-No.1350. Geneva: WMO. (2024-4-23)[2024-06-18]. https://library.wmo.int/idurl/4/68890. |
[29] | ZHANG C J, XIAO C, LI S, et al, 2023. Analysis of the composite risk grade for multi extreme climate events in China in recent 60 years[J]. Climate, 11(191): 1-21. https://doi.org/10.3390/cli11090191. |
[1] |
SU Hongmei , ZHANG Nan , RAN Xinmin , KANG Chao.
Machine learning flood early warning model for small and medium watersheds in arid and semi-arid regions and its application
[J]. Journal of Arid Meteorology, 2024, 42(5): 683-693.
|
[2] | CHEN Yixiao, YUE Siyu, XIA Wenwen. Spatiotemporal variation characteristics of drought disaster in China and correlations with direct economic losses [J]. Journal of Arid Meteorology, 2024, 42(4): 485-497. |
[3] | LI Chunhua, ZHU Biao, YANG Jinhu, HUANG Pengcheng. Analysis of climatic characteristics of meteorological drought in arid and semi-arid regions of China in recent 60 years [J]. Journal of Arid Meteorology, 2024, 42(4): 519-526. |
[4] | LU Xiaojuan, WANG Zhilan, ZHANG Jinyu, WANG Yun, WANG Lijuan, HU Die, SHA Sha, WANG Suping, LI Yiping. The synergistic effect of sea temperature and MJO on spring drought in southwestern China in 2023 [J]. Journal of Arid Meteorology, 2024, 42(2): 166-179. |
[5] | LIU Xingzhong, HU Chun, HE Chao, HE Guoping, MA Xiao, JIANG Xubin. Evolution characteristics of drought in the Panzhihua and Liangshan regions of Sichuan Province based on NDVI-LST model in the past 20 years [J]. Journal of Arid Meteorology, 2024, 42(2): 180-186. |
[6] | DONG Yuanzhu, WANG Tianhe, TAN Ruiqi, WANG Sichen, JIAO Yingzi, TANG Jingyi. A comparative study of two extreme dust events in the deserts and gobi regions in the arid regions of northwest China [J]. Journal of Arid Meteorology, 2024, 42(2): 197-208. |
[7] | GAO Zhiwei, LIU Jia, CHEN Yan, Zhong Aihua. Exploration of the hysteresis response characteristics of precipitation in China to tropical Pacific sea surface temperature [J]. Journal of Arid Meteorology, 2024, 42(2): 209-216. |
[8] | HAO Lisheng, HE Liye, MA Ning, HAO Yuqian. Relationship between interannual variability of El Niño events and summer droughts in North China [J]. Journal of Arid Meteorology, 2023, 41(6): 829-840. |
[9] | WANG Yun, WANG Lijuan, LU Xiaojuan, ZHANG Jinyu, WANG Zhilan, SHA Sha, HU Die, YANG Yang, YAN Pengcheng, LI Yiping. Analysis of the characteristics and causes of drought in China in the first half of 2023 [J]. Journal of Arid Meteorology, 2023, 41(6): 884-896. |
[10] | LI Danhua, ZHANG Qiang, LU Guoyang, LIU Liwei, REN Yulong, BAI Bing, YANG Yang, DUAN Bolong, HUANG Pengcheng. Numerical prediction ability analysis of extended period for a typical severe sandstorm process in northern China [J]. Journal of Arid Meteorology, 2023, 41(6): 944-951. |
[11] | ZENG Yingting, LI Cheng, LIN Yan, CHEN Li, LIN Binbin. Characteristics of LAI variation in East China and its relationship with climate factors from 1982 to 2016 [J]. Journal of Arid Meteorology, 2023, 41(5): 705-713. |
[12] | GAI Changsong, CAO Lijuan, YANG Yuanyan. The application of three interpolation methods to temperature in southwestern China [J]. Journal of Arid Meteorology, 2023, 41(5): 792-801. |
[13] | ZHANG Qiang, YANG Jinhu, MA Pengli, YUE Ping, YU Haipeng, YANG Zesu, WANG Pengling, DUAN Xinyu, LIU Xiaoyun, ZHU Biao, ZHANG Hongli, LU Guoyang, WANG Youheng, LIU Weiping, LIN Jinjin, LIU Liwei, YAN Xinyang. The enhancement and eastward expansion of climate warming and humidification, formation mechanism and important environmental impacts in Northwest China [J]. Journal of Arid Meteorology, 2023, 41(3): 351-358. |
[14] | YANG Yang, WANG Lijuan, HUANG Xiaoyan, QI Yue, XIE Rui. Analysis on spatio-temporal variation of evapotranspiration in the Yellow River Basin based on ERA5-Land products [J]. Journal of Arid Meteorology, 2023, 41(3): 390-402. |
[15] | WEI Dong, SHA Hong’e, QIN Haojun, LYU Qiaoyi, LIU Liwei, FU Zhao. Comparison of cloud products of ECMWF-HR and FY-2G satellite in the central and eastern parts of Northwest China [J]. Journal of Arid Meteorology, 2023, 41(3): 483-490. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com