| [1] |
安莉娟, 赵艳丽, 陈海英, 等, 2019. 基于三大全球集合预报系统对内蒙古降水预报能力评估[J]. 高原山地气象研究, 39(2):37-42.
|
| [2] |
陈圣劼, 刘梅, 张涵斌, 等, 2019. 集合预报产品在江苏省暴雨预报中的应用评估[J]. 气象, 45(7):893-907.
|
| [3] |
杜钧, GRUMM R H, 邓国, 2014. 预报异常极端高影响天气的“集合异常预报法”:以北京2012年7月21日特大暴雨为例[J]. 大气科学, 38(4):685-699.
|
| [4] |
范苏丹, 盛春岩, 肖明静, 等, 2015. 多模式集合对山东省气象要素预报效果检验[J]. 气象与环境学报, 31(6):68-77.
|
| [5] |
计燕霞, 孙鑫, 张涵斌, 等, 2024. 内蒙古对流尺度集合预报初始扰动构造的模拟试验研究[J]. 暴雨灾害, 43(2):195-203.
|
| [6] |
李俊, 杜钧, 许建玉, 等, 2020. 一次特大暴雨过程高分辨率集合预报试验的检验和评估[J]. 暴雨灾害, 39(2):176-184.
|
| [7] |
李俊, 杜钧, 陈超君, 2015. “频率匹配法”在集合降水预报中的应用研究[J]. 气象, 41(6):674-684.
|
| [8] |
李瑞青, 黄晓璐, 宋桂英, 等, 2023. 内蒙古东西部典型地区夏季极端暴雨特征对比分析[J]. 高原气象, 42(5):1 218-1 231.
|
| [9] |
廉丹华, 袁慧玲, 王婧羽, 等, 2024. 河南“21·7”特大暴雨的区域集合预报检验和预报偏差分析[J]. 南京大学学报:自然科学, 60(2):287-300.
|
| [10] |
马雅楠, 陈静, 徐致真, 等, 2023. GRAPES对流尺度集合预报模式中不同尺度初始扰动能量的演变特征[J]. 大气科学, 47(5): 1 541-1 556.
|
| [11] |
彭飞, 陈静, 李晓莉, 等, 2024. CMA-GEPS极端温度预报指数及2022年夏季极端高温预报检验评估[J]. 气象学报, 82(2):190-207.
|
| [12] |
钱卓蕾, 娄小芬, 罗玲, 等, 2022. ECMWF集合预报产品对浙江汛期降水的预报性能评估[J]. 科技通报, 38(5):9-15.
|
| [13] |
斯琴, 包福祥, 张旭, 2016. 基于EC集合预报产品的降水预报检验[J]. 中国农学通报, 32(7):162-167.
DOI
|
| [14] |
谭赛, 2023. 基于集合预报的“7·20”河南极端降水可预报性研究[D]. 南京: 南京信息工程大学.
|
| [15] |
王婧卓, 陈法敬, 陈静, 等, 2021. GRAPES区域集合预报对2019年中国汛期降水预报评估[J]. 大气科学, 45(3):664-682.
|
| [16] |
王秋萍, 潘贤, 周勃旸, 等, 2023. 区域集合预报系统的集合变换卡尔曼滤波初始扰动的余弦分析约束方案[J]. 大气科学, 47(6):1 731-1 745.
|
| [17] |
王叶红, 赵玉春, 2023. GRAPES-REPS对我国南方2017年初夏持续性降水预报的检验评估[J]. 干旱气象, 41(2):328-340.
DOI
|
| [18] |
吴卓亨, 陈静, 张涵斌, 等, 2024. 2021年“7·20”郑州暴雨极端雨强对流尺度集合预报试验[J]. 大气科学, 48(6):2 389-2 404.
|
| [19] |
武英娇, 杨浩, 钱仙桃, 等, 2019. ECMWF集合预报在安徽大别山区降水预报中的检验[J]. 暴雨灾害, 38(1):66-71.
|
| [20] |
肖柳斯, 张华龙, 张旭斌, 等, 2021. 基于CMA-TRAMS集合预报的“5·22”极端降水事件可预报性分析[J]. 气象学报, 79(6):956-976.
|
| [21] |
叶茂, 吴钲, 高松, 等, 2023. 对流尺度集合预报对川渝地区降水的预报性能分析[J]. 干旱气象, 41(1):152-163.
DOI
|
| [22] |
张涵斌, 计燕霞, 陈敏, 等, 2022. 基于观测扰动的集合预报EDA初值扰动方法研究[J]. 气象, 48(4):406-417.
|
| [23] |
朱科锋, 张晨悦, 薛明, 等, 2022. 对流可分辨尺度集合预报对河南“21·7”极端降水事件可预报性研究[J]. 中国科学:地球科学, 52(10):1 905-1 928.
|
| [24] |
BUIZZA R, MILLEER M, PALMER T N, 1999. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 125(560): 2 887-2 908.
DOI
URL
|
| [25] |
EBERT E E, 2001. Ability of a poor man’s ensemble to predict the probability and distribution of precipitation[J]. Monthly Weather Review, 129(10): 2 461-2 479.
DOI
URL
|
| [26] |
HOUTEKAMER P L, LEFAIVRE L, DEROME J, et al, 1996. A system simulation approach to ensemble prediction[J]. Monthly Weather Review, 124(6): 1 225-1 242.
DOI
URL
|
| [27] |
PALMER T N, BUIZZA R, DOBLAS-REYES F, et al, 2009. Stochastic parameterization and model uncertainty (ECMWF Technical Memorandum)[R]. Reading, UK: ECMWF.
|
| [28] |
ZHU K F, XUE M, 2016. Evaluation of WRF-based convection-permitting multi-physics ensemble forecasts over China for an extreme rainfall event on 21 July 2012 in Beijing[J]. Advances in Atmospheric Sciences, 33(11): 1 240-1 258.
DOI
|