干旱气象 ›› 2024, Vol. 42 ›› Issue (2): 197-208.DOI: 10.11755/j.issn.1006-7639(2024)-02-0197
董元柱1(), 王天河1,2(
), 谭睿琦1, 王思晨1, 焦英姿1, 唐靖宜1
收稿日期:
2024-01-12
修回日期:
2024-01-29
出版日期:
2024-04-30
发布日期:
2024-05-12
通讯作者:
王天河(1980—),男,甘肃静宁人,教授,主要从事沙尘特性遥感及输送机理研究。E-mail:作者简介:
董元柱(1998—),男,河南信阳人,硕士研究生,主要从事极端沙尘事件归因研究。E-mail:dongyzh21@lzu.edu.cn。
基金资助:
DONG Yuanzhu1(), WANG Tianhe1,2(
), TAN Ruiqi1, WANG Sichen1, JIAO Yingzi1, TANG Jingyi1
Received:
2024-01-12
Revised:
2024-01-29
Online:
2024-04-30
Published:
2024-05-12
摘要:
为深入理解极端沙尘暴事件的演变过程和驱动因子,结合多源卫星遥感及再分析数据,挑选2007年3月31日(“3·31”事件)和2021年3月14日(“3·14”事件)爆发于西北干旱区荒漠戈壁的两次沙尘暴事件,对比分析了其时空演变、高低空环流配置、近地面气象要素的变化。结果表明:(1)两次极端事件分别爆发于塔克拉玛干沙漠及戈壁荒漠,均受高低层天气系统影响。其中,“3·31”事件受地面冷锋和高空脊控制,脊前西北冷空气与地面冷锋引起的垂直运动配合,将沙尘往下游输送;而“3·14”事件则受蒙古气旋和高空槽影响,气旋后的偏北风和气旋引发的垂直运动将沙尘卷起至高层大气,并通过槽后西北风将其往下游输送;(2)两次极端沙尘事件均有持续时间长的特点,区别在于“3·31”事件主要受高压脊、均压场和周边地形影响,大气层结稳定,沙尘不易沉降和输送,而“3·14”事件则因中国北部持续性高压导致的偏南风和偏东风阻止了沙尘向下游扩散;(3)两次极端沙尘事件爆发前,塔克拉玛干和戈壁荒漠均出现了高温、降水减少及土壤水分枯竭现象,即强风和干燥土壤。为极端沙尘事件的爆发创造了有利的动力条件和物质基础。
中图分类号:
董元柱, 王天河, 谭睿琦, 王思晨, 焦英姿, 唐靖宜. 西北干旱区荒漠戈壁两次极端沙尘事件的对比研究[J]. 干旱气象, 2024, 42(2): 197-208.
DONG Yuanzhu, WANG Tianhe, TAN Ruiqi, WANG Sichen, JIAO Yingzi, TANG Jingyi. A comparative study of two extreme dust events in the deserts and gobi regions in the arid regions of northwest China[J]. Journal of Arid Meteorology, 2024, 42(2): 197-208.
图1 塔克拉玛干沙漠(黑色实线框)、戈壁荒漠(黑色虚线框)及气象站点位置
Fig.1 The location of the Taklamakan Desert (black solid line frame), the Gobi Desert (black dotted frame) and the meteorological stations
图2 2005—2021年塔克拉玛干沙漠和戈壁荒漠极端沙尘事件综合强度最大值的年际变化 (黑色圆圈表征综合强度最强的两次极端沙尘事件)
Fig.2 The inter-annual variations of the maximum comprehensive intensity of extreme dust events in the Taklamakan Desert and the Gobi Desert from 2005 to 2021 (The black circles represent the two extreme dust events with the strongest comprehensive intensity)
图3 2005—2021年塔克拉玛干沙漠(a)和戈壁荒漠(b)极端沙尘事件期间不同站点观测的最低能见度年际变化 (黑色圆圈表征综合强度最强的两次极端沙尘事件最低能见度)
Fig.3 The inter-annual variation of minimum visibility observed at different stations during the extreme dust events in the Taklimakan Desert (a) and the Gobi Desert (b) from 2005 to 2021 (The black circle represents the minimum visibility during the two extreme dust events with the strongest comprehensive intensity)
图4 塔克拉玛干沙漠“3·31”事件和戈壁荒漠“3·14”事件期间MODIS日平均气溶胶光学厚度(AOD)的演变 (黑线表示CALIPSO的轨迹)
Fig.4 Evolution of MODIS daily mean aerosol optical depth (AOD) during the “3·31” dust event period in the Taklimakan Desert and the “3·14” dust event period in the Gobi Desert (the black lines denote the track of CALIPSO)
图5 塔克拉玛干沙漠“3·31”事件和戈壁荒漠“3·14”事件期间CALIPSO观测的532 nm总衰减后向散射系数(左)、532 nm消光系数(中)及气溶胶类型(右)分别沿图4中黑色实线的垂直剖面 (右图色标数字1是未确定的气溶胶,2是清洁海洋气溶胶,3是沙尘气溶胶,4是污染大陆气溶胶/烟雾气溶胶,5是清洁大陆气溶胶,6是污染沙尘气溶胶,7是抬升烟雾气溶胶,8是海洋沙尘气溶胶,9是云)
Fig.5 The vertical profiles of the 532 nm total attenuated backscatter coefficient (the left), the 532 nm aerosol extinction coefficient (the middle), and the aerosol types (the right) observed by CALIPSO during the “3·31” dust event period in the Taklimakan Desert and the “3·14” dust event period in the Gobi Desert along the black solid line in fig.4, respectively (For the color bar of the right pictures, the number 1 represents undetermined aerosol, 2 is for clean marine aerosol, 3 is for dust aerosol, 4 is for polluted continental/smoke aerosol, 5 is for clean continental aerosol, 6 is for polluted dust aerosol, 7 is for elevated smoke aerosol, 8 is for marine dust aerosol, and 9 is for cloud)
图6 塔克拉玛干沙漠“3·31”事件爆发前一日(2007年3月30日)(a、c、e、g)及爆发时(2007年3月31日)(b、d、f、h)12:00 500 hPa位势高度场(填色,单位:gpm)和温度场(黑色等值线,单位:℃)(a、b),海平面气压场(填色,单位:hPa)和10 m风场(箭矢,单位:m·s-1)(c、d),10 m风场异常(单位:m·s-1)(e、f)及2 m温度场异常(单位:℃)(g、h) (黑色实线框为塔克拉玛干沙漠区域。下同)
Fig.6 The geopotential height field (color shaded, Unit: gpm) and temperature field (black isolines, Unit: ℃) at 500 hPa (a, b), sea level pressure field (color shaded, Unit: hPa) and 10 m wind field (arrow vectors, Unit: m·s-1) (c, d), 10 m wind field anomalies (Unit: m·s-1) (e, f) and 2 m temperature field anomalies (Unit: ℃) (g, h) on the day before (on 30 March 2007) (a, c, e, g) and at the outbreak (on 31 March 2007) (b, d, f, h) of the “3·31” dust event in the Taklimakan Desert (The black solid line frame is the Taklamakan Desert area. the same as bellow )
图7 戈壁荒漠“3·14”事件爆发前一日(2021年3月13日)(a、c、e、g)及爆发时(2021年3月14日)(b、d、f、h)12:00 500 hPa位势高度场(填色,单位:gpm)和温度场(黑色等值线,单位:℃)(a、b);海平面气压场(填色,单位:hPa)和10 m风场(箭矢,单位:m·s-1)(c、d),10 m风场异常(单位:m·s-1)(e、f)及2 m温度场异常(单位:℃)(g、h) (黑色实线框为戈壁荒漠区域。下同)
Fig.7 The geopotential height field (color shaded, Unit: gpm) and temperature field (black isolines, Unit: ℃) at 500 hPa (a, b), sea level pressure field (color shaded, Unit: hPa) and 10 m wind field (arrow vectors, Unit: m·s-1) (c, d), 10 m wind field anomalies (Unit: m·s-1) (e, f) and 2 m temperature field anomalies (Unit: ℃) (g, h) on the day before (on 13 March 2021) (a, c, e, g) and at the outbreak (on 14 March 2021) (b, d, f, h) of the “3·14” dust event in the Gobi Desert (The black dotted frame is the Taklamakan Desert area. the same as bellow )
图8 塔克拉玛干沙漠“3·31”事件(a、b、c)和戈壁荒漠“3·14”事件(d、e、f)维持期前3日12:00海平面气压场(填色,单位:hPa)、500 hPa位势高度场(黑色等值线,单位:gpm)及850 hPa风场(箭失,单位:m·s-1)
Fig.8 Sea level pressure field (color shaded, Unit: hPa), 500 hPa geopotential height field (black contours, Unit: gpm) and 850 hPa wind field ( arrow vectors, Unit: m·s-1) at 12:00 on the first three days of the maintenance period of the “3·31” dust event in the Taklimakan Desert (a, b, c) and the “3·14” dust event in the Gobi Desert (d, e, f)
图9 参照1992—2021年气候态的塔克拉玛干沙漠“3·31”事件(a、c、e)和戈壁荒漠“3·14”事件(b、d、f)前两周的2 m温度异常(单位:℃)(a, b)、总降水量异常(单位:mm)(c、d)和土壤体积含水量异常(单位:m3·m-3)(e、f)
Fig.9 The 2 m temperature anomaly (Unit: ℃) (a, b), total precipitation anomaly (Unit: mm) (c, d), and soil volumetric water anomaly (Unit: m3·m-3) (e, f) in 2 weeks before the “3·31” dust event in the Taklimakan Desert and the “3·14” dust event in the Gobi Desert with reference to the 1992-2021 climatology
图10 塔克拉玛干沙漠“3·31”事件和戈壁荒漠“3·14”事件前两周在沙尘源区域平均的2 m温度(a)、总降水量(b)和土壤体积含水量(c)
Fig.10 The average 2 m temperature (a), total precipitation (b), and soil volumetric water content (c) in the dust source area in two weeks before the the “3·31” dust event in the Taklimakan Desert and the “3·14” dust event in the Gobi Desert
[1] | 阿不力米提江·阿布力克木, 李娜, 赵克明, 等, 2019. 塔里木盆地一次“东灌”沙尘暴大气边界层特征[J]. 沙漠与绿洲气象, 13(5): 55-61. |
[2] | 陈思宇, 黄建平, 李景鑫, 等, 2017. 塔克拉玛干沙漠和戈壁沙尘起沙,传输和沉降的对比研究[J]. 中国科学:地球科学, 47(8): 939-957. |
[3] | 程红霞, 林粤江, 陈鹏, 等, 2023. 塔里木盆地沙尘天气日数变化及影响因素[J]. 干旱区研究, 40(11): 1 707-1 717. |
[4] | 黄建平, 陈文, 温之平, 等, 2019. 新中国成立70年以来的中国大气科学研究:气候与气候变化篇[J]. 中国科学:地球科学, 49(10): 1 607-1 640. |
[5] | 李汉林, 何清, 金莉莉, 2020. 塔克拉玛干沙漠腹地和北缘典型天气近地层风速廓线特征[J]. 干旱气象, 38(6): 965-978. |
[6] |
廖家艳, 周天, 韩璧森, 等, 2023. 我国西北半干旱区气溶胶类型的地基激光雷达判别[J]. 干旱气象, 41(4): 570-578.
DOI |
[7] |
曼吾拉·卡德尔, 张璐, 刘鑫华, 等, 2023. 塔里木盆地两次沙尘天气过程对比分析[J]. 中国沙漠, 43(4): 76-88.
DOI |
[8] | 齐斐斐, 买买提艾力·买买提依明, 霍文, 等, 2020. 塔克拉玛干沙漠腹地地表辐射和能量平衡及小气候特征[J]. 干旱气象, 38(1): 32-39. |
[9] | 热孜瓦古·孜比布拉, 阿依谢姆古丽·孜比不拉, 胡素琴, 等, 2021. 喀什地区浮尘天气特征及一次重污染天气成因分析[J]. 沙漠与绿洲气象, 15(1): 69-74. |
[10] | 吴盈盈, 刘旭阳, 王振亭, 2022. 巴丹吉林沙漠腹地沙尘事件对近地表气温和太阳总辐射的影响[J]. 沙漠与绿洲气象, 16(2): 85-90. |
[11] |
徐路扬, 翟亮, 王媛媛, 等, 2023. 多源遥感数据在北京春季沙尘天气监测中的应用评估[J]. 干旱气象, 41(2): 318-327.
DOI |
[12] |
杨晓军, 张强, 叶培龙, 等, 2021. 中国北方2021年3月中旬持续性沙尘天气的特征及其成因[J]. 中国沙漠, 41(3): 245-255.
DOI |
[13] | 阴璐璐, 何清, 李京龙, 等, 2023. 基于地基雷达探究和田市一次沙尘污染过程[J]. 中国环境科学, 43(12): 6 290-6 300. |
[14] | 尹志聪, 霍芊伊, 麻晓晴, 等, 2023. 触发2023年春季中国北方沙尘暴的沙源累积和天气扰动机制[J]. 大气科学学报, 46(3): 321-331. |
[15] | ADAMS A M, PROSPERO J M, ZHANG C D, 2012. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents[J]. Journal of Climate, 25 (19): 6 862-6 879. |
[16] | ANDERSON T L, WU Y H, CHU D A, et al, 2005. Testing the MODIS satellite retrieval of aerosol fine-mode fraction[J]. Journal of Geophysical Research: Atmospheres, 110(D18), D18204. DOI: 110.10.1029/2005jd005978. |
[17] | CHEN S Y, HUANG J P, LI J X, et al, 2017. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011[J]. Science China-Earth Sciences, 60(7): 1 338-1 355. |
[18] | CHEN S Y, ZHAO D, HUANG J P, et al, 2023. Mongolia contributed more than 42% of the dust concentrations in Northern China in March and April 2023[J]. Advances in Atmospheric Sciences, 40(9): 1 549-1 557. |
[19] | FAN K, WANG H J, 2004. Antarctic oscillation and the dust weather frequency in North China[J]. Geophysical Research Letters, 31(10), DOI: 10.1029/2004GL019465. |
[20] | GINOUX P, DEROUBAIX A, 2017. Space observations of dust in East Asia[M]// BOUARARI, WANGX, BRASSEURG. Air Pollution in Eastern Asia:An Integrated Perspective. ISSI Scientific Report Series, vol 16. Springer, Cham. |
[21] | GUI K, CHE H Z, ZHENG Y, et al, 2021. Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: Insights from 13 years (2007-2019) of CALIOP observations[J]. Atmospheric Chemistry and Physics, 21(19): 15 309-15 336. |
[22] | GUO J P, LOU M Y, MIAO Y C, et al, 2017. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling[J]. Environmental Pollution, 230: 1 030-1 039. |
[23] | GUPTA P, REMER L A, LEVY R C, et al, 2018. Validation of MODIS 3 km land aerosol optical depth from NASA’s EOS Terra and Aqua missions[J]. Atmospheric Measurement Techniques, 11(5): 3 145-3 159. |
[24] | HAN Y, WANG T H, TANG J Y, et al, 2022. New insights into the Asian dust cycle derived from CALIPSO lidar measurements[J]. Remote Sensing of Environment, 272, 112906. DOI: 10.1016/j.rse.2022.112906. |
[25] | HAYWOOD J M, FRANCIS P N, GLEW M D, et al, 2001. Optical properties and direct radiative effect of Saharan dust: A case study of two Saharan dust outbreaks using aircraft data[J]. Journal of Geophysical Research: Atmospheres, 106(D16): 18 417-18 430. |
[26] | HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1 999-2 049. |
[27] | PROSPERO J M, GINOUX P, TORRES O, et al, 2002. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product[J]. Reviews of Geophysics, 40(1), 1002. DOI: 10.1029/2000RG000095 |
[28] | PU B, GINOUX P, 2018. How reliable are CMIP5 models in simulating dust optical depth?[J] Atmospheric Chemistry and Physics, 18 (16): 12 491-12 510. |
[29] | PU B, JIN Q, 2021. A record-breaking trans-atlantic African dust plume associated with atmospheric circulation extremes in June 2020[J]. Bulletin of the American Meteorological Society, 102(7): E1340-E1356. |
[30] | SAVTCHENKO A, OUZOUNOV D, AHMAD S, et al, 2004. Terra and Aqua MODIS products available from NASA GES DAAC[J]. Advances in Space Research, 34(10): 710-714. |
[31] | SCHUERGER A C, SMITH D J, GRIFFIN D W, et al, 2018. Science questions and knowledge gaps to study microbial transport and survival in Asian and African dust plumes reaching North America[J]. Aerobiologia, 34 (4): 425-435. |
[32] | SONG Q Q, ZHANG Z B, YU H B, et al, 2021. Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: Regional and interannual variability[J]. Atmospheric Chemistry and Physics, 21(17): 13 369-13 395. |
[33] | UNO I, EGUCHI K, YUMIMOTO K, et al, 2011. Large Asian dust layers continuously reached North America in April 2010[J]. Atmospheric Chemistry and Physics, 11(14): 7 333-7 341. |
[34] | WANG T, HAN Y, HUANG J, et al, 2020. Climatology of dust-forced radiative heating over the Tibetan Plateau and its surroundings[J]. Journal of Geophysical Research: Atmospheres, 125 (17), e2020JD032942. DOI: 10.1029/2020JD032942. |
[35] | WINKER D M, VAUGHAN M A, OMAR A, et al, 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. Journal of Atmospheric and Oceanic Technology, 26 (11): 2 310-2 323. |
[36] |
WU C L, LIN Z H, SHAO Y P, et al, 2022. Drivers of recent decline in dust activity over East Asia[J]. Nature Communications, 13 (1), 7105. DOI: 10.1038/s41467-022-34823-3.
PMID |
[37] | YAO W R, GUI K, WANG Y Q, et al, 2021. Identifying the dominant local factors of 2000-2019 changes in dust loading over East Asia[J]. Science of the Total Environment, 777, 146064. DOI: 10.1016/j.scitotenv.2021.146064. |
[38] | YIN Z C, WAN Y, ZHANG Y J, et al, 2022. Why super sandstorm 2021 in North China?[J]. National Science Review, 9(3), nwab165. DOI: 10.1093/nsr/nwab165. |
[39] | YU X N, LÜ R, KUMAR K R, et al, 2016. Dust aerosol properties and radiative forcing observed in spring during 2001-2014 over urban Beijing, China[J]. Environmental Science and Pollution Research, 23 (15): 15 432-15 442. |
[1] | 赵 蔚, 刘建宏, 王 坤, 张超华, 车晶晶, 韩颖娟. 半干旱区暴雨综合灾害风险预警模型构建及其在宁夏的应用[J]. 干旱气象, 2024, 42(3): 458-. |
[2] | 刘兴忠, 胡春, 何超, 何国平, 马骁, 姜绪彬. 基于NDVI-LST模型的四川攀西地区近20 a干旱演变特征[J]. 干旱气象, 2024, 42(2): 180-186. |
[3] | 刘文英, 孙素琴, 朱星球, 欧阳欣欣. 江西省区域性高温和干旱过程分析与评估[J]. 干旱气象, 2024, 42(2): 187-196. |
[4] | 廖丞蕊, 陈永仁, 肖天贵. 成都平原不同播期水稻生育期气候资源及干旱特征分析——以广汉为例[J]. 干旱气象, 2024, 42(1): 39-46. |
[5] | 何慧根, 张驰, 吴遥, 李永华, 杨琴, 穆玉娇. 重庆夏季高温干旱特征及其对拉尼娜事件的响应[J]. 干旱气象, 2023, 41(6): 873-883. |
[6] | 张娣, 曲晓黎, 张中杰, 张金满, 王洁, 尤琦. 朔黄铁路水害特征及雨量警戒阈值研究[J]. 干旱气象, 2022, 40(4): 677-682. |
[7] | 唐懿, 蔡雯悦, 翟建青, 王素萍, 刘远, 陈逸骁, 高歌, 王国复. 2021年夏季中国气候异常特征及主要气象灾害[J]. 干旱气象, 2022, 40(2): 179-186. |
[8] | 马蕾, 刘垚, 武万里, 缑晓辉, 苏占胜, . 宁夏高速公路大风灾害风险评价[J]. 干旱气象, 2020, 38(03): 504-510. |
[9] | 张振东, 田小毅, 黄亮, 白静漪, 汪玲玲. 长江航道江苏段风灾事故分析[J]. 干旱气象, 2020, 38(03): 511-517. |
[10] | 王洁, 范俊红, 赵增保, 张彦恒, 杨琳晗. 冀北输电线舞动灾害特征与气象条件分析[J]. 干旱气象, 2019, 37(6): 1021-1027. |
[11] | 曲晓黎, 张娣, 郭蕊, 齐宇超, 赵增保, 吴丹. 基于气象条件的河北高速公路通行状况综合风险等级预报方法[J]. 干旱气象, 2019, 37(2): 345-350. |
[12] | 王 洁,付桂琴,武辉芹,齐宇超,赵增保. 冀北电网灾害事故的时空分布特征及风险评价[J]. 干旱气象, 2018, 36(5): 879-883. |
[13] | 张亚琳,安炜,李毓富,茅彧,赵海燕. 基于FloodArea模型的洪安涧河流域暴雨洪涝灾害风险区划[J]. 干旱气象, 2018, 36(4): 694-700. |
[14] | 刘 畅,杨成芳. 山东省极端降雪天气事件特征分析[J]. 干旱气象, 2017, 35(6): 957-967. |
[15] | 李丹,李云鹏,刘朋涛. 内蒙古近30 a气象灾害时空变化特征[J]. 干旱气象, 2016, 34(4): 663-669. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: