| [1] |
李春华, 朱飙, 杨金虎, 等, 2024. 我国干旱半干旱区近60 a气象干旱气候特征分析[J]. 干旱气象, 42(4):519-526.
DOI
|
| [2] |
林纾, 李红英, 黄鹏程, 等, 2022. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 40(5):748-763.
DOI
|
| [3] |
刘洋鹏, 罗斯生, 吴泽鹏, 等, 2025. 广东省森林火灾形势与应对措施探讨: 基于美国加州大火启示分析[J]. 森林防火, 43(3):64-67.
|
| [4] |
钱维宏, 2012. 天气尺度瞬变扰动的物理分解原理[J]. 地球物理学报, 55(5):1 439-1 448.
|
| [5] |
钱维宏, 单晓龙, 朱亚芬, 2012. 天气尺度扰动流场对区域暴雨的指示能力[J]. 地球物理学报, 55(5):1 513-1 522.
|
| [6] |
钱维宏, 张宗婕, 2012. 西南区域持续性干旱事件的行星尺度和天气尺度扰动信号[J]. 地球物理学报, 55(5):1 462-1 471.
|
| [7] |
田永丽, 王秋华, 2019. 气象条件异常对美国加利福尼亚州山火的影响[J]. 森林防火, 37(3): 21-25.
|
| [8] |
颜鹏程, 李忆平, 曾鼎文, 等, 2024. 2024年4—6月我国区域性高温干旱特征及其影响因子[J]. 干旱气象, 42(4):507-518.
DOI
|
| [9] |
张强, 黄建平, 杨金虎, 等, 2025. 中国干旱、半干旱区气候变化及影响研究百年进展[J]. 气象学报, 83(3):699-715.
|
| [10] |
周扬, 李宁, 吉中会, 等, 2013. 基于SPI指数的1981—2010年内蒙古地区干旱时空分布特征[J]. 自然资源学报, 28(10):1 694-1 706.
|
| [11] |
ABATZOGLOU J T, WILLIAMS A P, BARBERO R, 2019. Global emergence of anthropogenic climate change in fire weather indices[J]. Geophysical Research Letters, 46(1): 326-336.
DOI
|
| [12] |
BOWRING S P K, JONES M W, CIAIS P, et al, 2022. Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system[J]. Nature Geoscience, 15,135-142.
DOI
|
| [13] |
CHIODI A M, POTTER B E, LARKIN N K, 2021. Multi-decadal change in western US nighttime vapor pressure deficit[J]. Geophysical Research Letters, 48(15): e2021GL092830. DOI:10.1029/2021GL092830.
|
| [14] |
DU L, LU R Y, 2021. Wave trains of 10-30-day meridional wind variations over the North Pacific during summer[J]. Journal of Climate, 34: 9 267-9 277.
|
| [15] |
DU L, LU R Y, 2022. Distinct intensity of 10-30-day intraseasonal waves over the North Pacific between early and late summers[J]. Atmospheric and Oceanic Science Letters, 15(4): 100204.DOI:10.1016/j.aosl.2022.100204.
|
| [16] |
GRILLAKIS M, VOULGARAKIS A, ROVITHAKIS A, et al, 2022. Climate drivers of global wildfire burned area[J]. Environmental Research Letters, 17(4): 045021. DOI:10.1088/1748-9326/ac5fa1.
|
| [17] |
HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730):1 999-2 049.
DOI
URL
|
| [18] |
JAIN P, CASTELLANOS-ACUNA D, COOGAN S C P, et al, 2022. Observed increases in extreme fire weather driven by atmospheric humidity and temperature[J]. Nature Climate Change, 12(1): 63-70.
DOI
|
| [19] |
JI F, WU Z H, HUANG J P, 2014. Evolution of land surface air temperature trend[J]. Nature Climate Change, 4(6):462-466.
DOI
|
| [20] |
LUO B H, LUO D H, DAI A G, et al, 2024. Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires[J]. Nature Communications, 15: 5399. DOI:10.1038/s41467-024-49677-0.
PMID
|
| [21] |
LUO B H, XIAO C D, LUO D H, et al, 2025. Atmospheric and oceanic drivers behind the 2023 Canadian wildfires[J]. Communications Earth & Environment, 6: 446. DOI:10.1038/s43247-025-02387-x.
|
| [22] |
MACK M C, BRET-HARTE M S, HOLLINGSWORTH T N, et al, 2011. Carbon loss from an unprecedented Arctic tundra wildfire[J]. Nature, 475(7357): 489-492.
DOI
|
| [23] |
PINTO M M, DACAMARA C C, HURDUC A, et al, 2020. Enhancing the fire weather index with atmospheric instability information[J]. Environmental Research Letters, 15(9): 0940b7. DOI:10.1088/1748-9326/ab9e22.
|
| [24] |
SEDANO F, RANDERSON J T, 2014. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems[J]. Biogeosciences, 11(4): 3 739-3 755.
DOI
URL
|
| [25] |
SENANDE-RIVERA M, INSUA-COSTA D, MIGUEZ-MACHO G, 2022. Spatial and temporal expansion of global wildland fire activity in response to climate change[J]. Nature Communications, 13: 1208.DOI:10.1038/s41467-022-28835-2.
|
| [26] |
TAKAYA K, NAKAMURA H, 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. Journal of the Atmospheric Sciences, 58(6): 608-627.
DOI
URL
|
| [27] |
TRENBERTH K E, FASULLO J T, SHEPHERD T G, 2015. Attribution of climate extreme events[J]. Nature Climate Change, 5(8): 725-730.
DOI
|
| [28] |
TURETSKY M R, BENSCOTER B, PAGE S S, et al, 2015. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 8(1): 11-14.
DOI
|
| [29] |
VITOLO C, DI GIUSEPPE F, KRZEMINSKI B, et al, 2019. A 1980-2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices[J]. Scientific Data, 6: 190032. DOI:10.1038/sdata.2019.32.
|
| [30] |
WU Z H, HUANG N E, 2009. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1(1): 1-41.
DOI
URL
|
| [31] |
ZHENG B, CIAIS P, CHEVALLIER F, et al, 2023. Record-high CO2 emissions from boreal fires in 2021[J]. Science, 379(6635): 912-917.
DOI
URL
|