干旱气象 ›› 2024, Vol. 42 ›› Issue (6): 953-964.DOI: 10.11755/j.issn.1006-7639-2024-06-0953
谢子扬1,3(), 李长顺2,3(
), 蔡嘉仪2, 王珊珊2
收稿日期:
2024-03-24
修回日期:
2024-07-09
出版日期:
2024-12-31
发布日期:
2025-01-15
通讯作者:
李长顺(1984—),男,江苏徐州人,高级工程师,主要从事生态气象服务。E-mail:lchangshun@163.com。
作者简介:
谢子扬(1994—),男,山西天镇人,硕士,助理工程师,主要从事生态气象服务。E-mail:nmgxzy94@126.com。
基金资助:
XIE Ziyang1,3(), LI Changshun2,3(
), CAI Jiayi2, WANG Shanshan2
Received:
2024-03-24
Revised:
2024-07-09
Online:
2024-12-31
Published:
2025-01-15
摘要:
土壤墒情是重要的土壤干旱监测指标,研究其与气候变化的关系有助于揭示全球变化背景下土壤干旱的发生机制。本文基于Web of Science数据库核心数据集,对气候变化与土壤墒情关系研究主题的文献进行了分析,结果表明,1988—2023年相关文献数量呈“平稳、增长、激增”的变化趋势。其中,中国学者和科研单位发表的文献数量最多,但整体国际影响力相较美国等发达国家仍显不足。在学科分布上,研究成果主要集中于环境科学与生态学、地球科学及农林科学等领域。研究重点包括土壤-气候相互作用、土壤生态系统管理、水文气象与土壤干旱监测,以及气候数据分析与生态模型应用等方面。近年来,研究热点逐渐聚焦于前沿技术(如多源传感监测和人工智能等)在土壤干旱监测中的应用,同时,极端气候事件对不同生态系统的影响及其应对策略也成为重要研究方向。
中图分类号:
谢子扬, 李长顺, 蔡嘉仪, 王珊珊. 1988—2023年气候变化与土壤墒情关系研究的文献计量分析与可视化[J]. 干旱气象, 2024, 42(6): 953-964.
XIE Ziyang, LI Changshun, CAI Jiayi, WANG Shanshan. Bibliometric analysis and visualization of the relationship between climate change and soil moisture from 1988 to 2023[J]. Journal of Arid Meteorology, 2024, 42(6): 953-964.
描述性信息 | 结果 | 描述性信息 | 结果 |
---|---|---|---|
出版时间/年 | 1988—2023 | 作者数量/人 | 31 907 |
发文数年均增长率/% | 22.75 | 所有作者出现频数/次 | 59 397 |
文献数量/篇 | 10 875 | 仅发表一篇文章的作者数/人 | 300 |
论文数量/篇 | 9 749 | 单一作者文献数/篇 | 324 |
数据论文/篇 | 25 | 平均每个作者文献数/篇 | 0.341 |
优先出版论文/篇 | 87 | 平均每篇文献合作作者数/人 | 5.46 |
会议论文/篇 | 129 | 国际合作率/% | 38.15 |
书籍/部 | 3 | 每份文献平均被引次数/次 | 36.12 |
综述/篇 | 395 | 每篇文献年均被引次数/次 | 3.79 |
检索关键词/个 | 13 610 | 参考文献数/条 | 330 595 |
作者关键词/个 | 19 461 | 文献来源(期刊、图书等)/种 | 1 402 |
表1 有关气候变化与土壤墒情关系研究的文献描述性分析结果
Tab.1 Descriptive analysis result of literature on the relationship between climate change and soil moisture
描述性信息 | 结果 | 描述性信息 | 结果 |
---|---|---|---|
出版时间/年 | 1988—2023 | 作者数量/人 | 31 907 |
发文数年均增长率/% | 22.75 | 所有作者出现频数/次 | 59 397 |
文献数量/篇 | 10 875 | 仅发表一篇文章的作者数/人 | 300 |
论文数量/篇 | 9 749 | 单一作者文献数/篇 | 324 |
数据论文/篇 | 25 | 平均每个作者文献数/篇 | 0.341 |
优先出版论文/篇 | 87 | 平均每篇文献合作作者数/人 | 5.46 |
会议论文/篇 | 129 | 国际合作率/% | 38.15 |
书籍/部 | 3 | 每份文献平均被引次数/次 | 36.12 |
综述/篇 | 395 | 每篇文献年均被引次数/次 | 3.79 |
检索关键词/个 | 13 610 | 参考文献数/条 | 330 595 |
作者关键词/个 | 19 461 | 文献来源(期刊、图书等)/种 | 1 402 |
图1 1988—2023年气候变化与土壤墒情关系研究主题文献发表数量
Fig.1 Quantity of literature published on the subject of research on the relationship between climate change and soil moisture from 1988 to 2023
图2 1988—2023年气候变化与土壤墒情关系研究主题文献年总被引用频次
Fig.2 The annual total of citation frequency of literature on the subject of the relationship between climate change and soil moisture from 1988 to 2023
国家 (地区) | 文章数/篇 | SCP | MCP | MCP比率/% | 被引次数/次 | 篇均被引次数/次 |
---|---|---|---|---|---|---|
中国 | 2 950 | 1 876 | 1 074 | 36.4 | 61 516 | 20.85 |
美国 | 2 507 | 1 875 | 632 | 25.2 | 141 598 | 56.48 |
德国 | 511 | 248 | 263 | 51.5 | 22 158 | 43.36 |
加拿大 | 445 | 309 | 136 | 30.6 | 13 201 | 29.67 |
澳大利亚 | 423 | 245 | 178 | 42.1 | 18 042 | 42.65 |
英国 | 391 | 197 | 194 | 49.6 | 22 378 | 57.23 |
印度 | 322 | 252 | 70 | 21.7 | 4 811 | 14.94 |
西班牙 | 304 | 177 | 127 | 41.8 | 17 007 | 55.94 |
法国 | 257 | 127 | 130 | 50.6 | 10 490 | 40.82 |
意大利 | 246 | 121 | 125 | 50.8 | 6 859 | 27.88 |
表2 气候变化与土壤墒情关系研究领域文献发表数量排名前10的国家(地区)
Tab.2 Top 10 countries (regions) as source of the number of documents published on the relationship between climate change and soil moisture topics
国家 (地区) | 文章数/篇 | SCP | MCP | MCP比率/% | 被引次数/次 | 篇均被引次数/次 |
---|---|---|---|---|---|---|
中国 | 2 950 | 1 876 | 1 074 | 36.4 | 61 516 | 20.85 |
美国 | 2 507 | 1 875 | 632 | 25.2 | 141 598 | 56.48 |
德国 | 511 | 248 | 263 | 51.5 | 22 158 | 43.36 |
加拿大 | 445 | 309 | 136 | 30.6 | 13 201 | 29.67 |
澳大利亚 | 423 | 245 | 178 | 42.1 | 18 042 | 42.65 |
英国 | 391 | 197 | 194 | 49.6 | 22 378 | 57.23 |
印度 | 322 | 252 | 70 | 21.7 | 4 811 | 14.94 |
西班牙 | 304 | 177 | 127 | 41.8 | 17 007 | 55.94 |
法国 | 257 | 127 | 130 | 50.6 | 10 490 | 40.82 |
意大利 | 246 | 121 | 125 | 50.8 | 6 859 | 27.88 |
发文机构 | 来源国家 | 发文数/篇 | 被引次数/次 | 篇均被引次数/次 |
---|---|---|---|---|
中国科学院 | 中国 | 1 579 | 45 341 | 28.72 |
中国科学院大学 | 中国 | 702 | 15 907 | 22.66 |
北京师范大学 | 中国 | 268 | 7 199 | 26.86 |
西北农林科技大学 | 中国 | 174 | 3 686 | 21.18 |
南京信息工程大学 | 中国 | 160 | 4 320 | 27.00 |
兰州大学 | 中国 | 157 | 3 475 | 22.13 |
科罗拉多州立大学 | 美国 | 155 | 9 934 | 64.09 |
美国地质调查局 | 美国 | 151 | 12 992 | 86.04 |
美国航空航天局 | 美国 | 149 | 14 265 | 95.74 |
加利福尼亚大学伯克利分校 | 美国 | 140 | 10 111 | 72.22 |
表3 气候变化与土壤墒情关系研究领域文献发表数量排名前10的机构
Tab.3 Top 10 institutions by number of publications in the field on the relationship between climate change and soil moisture
发文机构 | 来源国家 | 发文数/篇 | 被引次数/次 | 篇均被引次数/次 |
---|---|---|---|---|
中国科学院 | 中国 | 1 579 | 45 341 | 28.72 |
中国科学院大学 | 中国 | 702 | 15 907 | 22.66 |
北京师范大学 | 中国 | 268 | 7 199 | 26.86 |
西北农林科技大学 | 中国 | 174 | 3 686 | 21.18 |
南京信息工程大学 | 中国 | 160 | 4 320 | 27.00 |
兰州大学 | 中国 | 157 | 3 475 | 22.13 |
科罗拉多州立大学 | 美国 | 155 | 9 934 | 64.09 |
美国地质调查局 | 美国 | 151 | 12 992 | 86.04 |
美国航空航天局 | 美国 | 149 | 14 265 | 95.74 |
加利福尼亚大学伯克利分校 | 美国 | 140 | 10 111 | 72.22 |
发文机构 | 来源 国家 | 发文数/篇 | 被引次数/次 | 篇均被引次数/次 |
---|---|---|---|---|
纽约州立大学阿尔巴尼分校 | 美国 | 18 | 4 023 | 223.50 |
西蒙菲莎大学 | 加拿大 | 8 | 1 726 | 215.75 |
苏黎世联邦理工学院 | 瑞士 | 67 | 14 182 | 211.67 |
东英吉利大学 | 英国 | 9 | 1 743 | 193.67 |
美国国家大气研究中心 | 美国 | 126 | 22 071 | 175.17 |
瑞士联邦水生科学和技术研究所 | 瑞士 | 6 | 1 040 | 173.33 |
筑波大学 | 日本 | 12 | 1 987 | 165.58 |
英国地质调查局 | 英国 | 10 | 1 647 | 164.70 |
维多利亚大学 | 加拿大 | 28 | 4 242 | 151.50 |
欧洲空间应用与电信中心 | 英国 | 18 | 757 | 151.40 |
表4 气候变化与土壤墒情关系研究领域文献篇均被引次数排名前10的机构
Tab.4 Top 10 institutions with highest citations per literature on relationship between climate change and soil moisture
发文机构 | 来源 国家 | 发文数/篇 | 被引次数/次 | 篇均被引次数/次 |
---|---|---|---|---|
纽约州立大学阿尔巴尼分校 | 美国 | 18 | 4 023 | 223.50 |
西蒙菲莎大学 | 加拿大 | 8 | 1 726 | 215.75 |
苏黎世联邦理工学院 | 瑞士 | 67 | 14 182 | 211.67 |
东英吉利大学 | 英国 | 9 | 1 743 | 193.67 |
美国国家大气研究中心 | 美国 | 126 | 22 071 | 175.17 |
瑞士联邦水生科学和技术研究所 | 瑞士 | 6 | 1 040 | 173.33 |
筑波大学 | 日本 | 12 | 1 987 | 165.58 |
英国地质调查局 | 英国 | 10 | 1 647 | 164.70 |
维多利亚大学 | 加拿大 | 28 | 4 242 | 151.50 |
欧洲空间应用与电信中心 | 英国 | 18 | 757 | 151.40 |
期刊英文名 | 中文译名 | 文章数/篇 | 大类学科(分区) | Citescore指数 |
---|---|---|---|---|
Science of the Total Environment | 整体环境科学 | 340 | 环境科学与生态学(1) | 16.8 |
Journal of Hydrology | 水文学杂志 | 339 | 地球科学(1) | 10.4 |
Agricultural and Forest Meteorology | 农业与森林气象学 | 290 | 农林科学(1) | 10.7 |
Remote Sensing | 遥感 | 274 | 地球科学(2) | 7.9 |
Global Change Biology | 全球变化生物学 | 273 | 环境科学与生态学(1) | 19.5 |
Water | 水 | 183 | 环境科学与生态学(3) | 5.5 |
Journal of Geophysical Research-Atmospheres | 地球物理学研究杂志:大气 | 182 | 地球科学(2) | 8.1 |
Journal of Climate | 气候杂志 | 178 | 地球科学(2) | 8.7 |
Water Resources Research | 水资源研究 | 170 | 地球科学(1) | 8.8 |
Hydrology And Earth System Sciences | 水文学与地球系统科学 | 157 | 地球科学(1) | 9.5 |
表5 气候变化与土壤墒情关系研究领域发文数量排名前10的期刊
Tab.5 Top 10 journals by number of publications in the field on relationship between climate change and soil moisture
期刊英文名 | 中文译名 | 文章数/篇 | 大类学科(分区) | Citescore指数 |
---|---|---|---|---|
Science of the Total Environment | 整体环境科学 | 340 | 环境科学与生态学(1) | 16.8 |
Journal of Hydrology | 水文学杂志 | 339 | 地球科学(1) | 10.4 |
Agricultural and Forest Meteorology | 农业与森林气象学 | 290 | 农林科学(1) | 10.7 |
Remote Sensing | 遥感 | 274 | 地球科学(2) | 7.9 |
Global Change Biology | 全球变化生物学 | 273 | 环境科学与生态学(1) | 19.5 |
Water | 水 | 183 | 环境科学与生态学(3) | 5.5 |
Journal of Geophysical Research-Atmospheres | 地球物理学研究杂志:大气 | 182 | 地球科学(2) | 8.1 |
Journal of Climate | 气候杂志 | 178 | 地球科学(2) | 8.7 |
Water Resources Research | 水资源研究 | 170 | 地球科学(1) | 8.8 |
Hydrology And Earth System Sciences | 水文学与地球系统科学 | 157 | 地球科学(1) | 9.5 |
作者 | 文章数/篇 | h指数 | g指数 | m指数 | 被引次数/次 | 论文发表起始年份/年 |
---|---|---|---|---|---|---|
Li Y | 78 | 23 | 41 | 1.64 | 1 812 | 2011 |
Seneviratne SI | 65 | 41 | 65 | 1.78 | 13 993 | 2002 |
Wang J | 62 | 17 | 32 | 1.31 | 1 116 | 2012 |
PeñUelas J | 61 | 34 | 61 | 1.55 | 4 308 | 2003 |
Liu Y | 59 | 16 | 34 | 1.45 | 1 234 | 2014 |
Wang H | 58 | 22 | 41 | 1.57 | 1 781 | 2011 |
Zhang Y | 57 | 21 | 43 | 0.91 | 1 905 | 2002 |
Zhang L | 55 | 18 | 33 | 1.00 | 1 161 | 2007 |
Wang Y | 50 | 19 | 34 | 0.76 | 1 201 | 2000 |
Wang L | 46 | 23 | 46 | 1.77 | 2 351 | 2012 |
表6 气候变化与土壤墒情关系主题文章前10名高产作者信息
Tab.6 Top 10 most prolific authors on the topic of relationship between climate change and soil moisture
作者 | 文章数/篇 | h指数 | g指数 | m指数 | 被引次数/次 | 论文发表起始年份/年 |
---|---|---|---|---|---|---|
Li Y | 78 | 23 | 41 | 1.64 | 1 812 | 2011 |
Seneviratne SI | 65 | 41 | 65 | 1.78 | 13 993 | 2002 |
Wang J | 62 | 17 | 32 | 1.31 | 1 116 | 2012 |
PeñUelas J | 61 | 34 | 61 | 1.55 | 4 308 | 2003 |
Liu Y | 59 | 16 | 34 | 1.45 | 1 234 | 2014 |
Wang H | 58 | 22 | 41 | 1.57 | 1 781 | 2011 |
Zhang Y | 57 | 21 | 43 | 0.91 | 1 905 | 2002 |
Zhang L | 55 | 18 | 33 | 1.00 | 1 161 | 2007 |
Wang Y | 50 | 19 | 34 | 0.76 | 1 201 | 2000 |
Wang L | 46 | 23 | 46 | 1.77 | 2 351 | 2012 |
作者(发表年份) | 来源期刊 | 被引次 数/次 | 年均被 引数/次 | 研究主题 |
---|---|---|---|---|
Vicente-Serrano et al. ( | Journal of Climate | 4 858 | 323.9 | 气候干旱指数的构建 |
Seneviratne et al. ( | Earth-Science Reviews | 3 017 | 201.1 | 气候系统与土壤水分相互作用机理 |
Dai ( | Nature Climate Change | 2 969 | 247.4 | 模型预测气候干旱趋势 |
Sitch et al. ( | Global Change Biology | 2 247 | 102.1 | 生态系统动态与碳循环模拟与评估 |
Mishra and Singh ( | Journal of Hydrology | 2 226 | 148.4 | 干旱特征与影响分析 |
Trenberth ( | Climate Research | 2 118 | 151.3 | 气候变化对水文循环影响 |
Dai ( | Wiley Interdisciplinary Reviews-Climate Change | 2 118 | 151.3 | 气候变化与干旱演变 |
Breshears et al. ( | Proceedings of the National Academy of Sciences | 1 593 | 79.7 | 土壤干旱与植被死亡情况 |
Huntington ( | Journal of Hydrology | 1 591 | 83.7 | 气候变化对水文循环影响 |
Jung et al. ( | Nature | 1 558 | 103.9 | 陆地蒸散发变化与气候响应 |
表7 气候变化与土壤墒情关系研究主题前10名高被引用文章详细情况
Tab.7 Top 10 most highly cited articles on the topic of the relationship between climate change and soil moisture
作者(发表年份) | 来源期刊 | 被引次 数/次 | 年均被 引数/次 | 研究主题 |
---|---|---|---|---|
Vicente-Serrano et al. ( | Journal of Climate | 4 858 | 323.9 | 气候干旱指数的构建 |
Seneviratne et al. ( | Earth-Science Reviews | 3 017 | 201.1 | 气候系统与土壤水分相互作用机理 |
Dai ( | Nature Climate Change | 2 969 | 247.4 | 模型预测气候干旱趋势 |
Sitch et al. ( | Global Change Biology | 2 247 | 102.1 | 生态系统动态与碳循环模拟与评估 |
Mishra and Singh ( | Journal of Hydrology | 2 226 | 148.4 | 干旱特征与影响分析 |
Trenberth ( | Climate Research | 2 118 | 151.3 | 气候变化对水文循环影响 |
Dai ( | Wiley Interdisciplinary Reviews-Climate Change | 2 118 | 151.3 | 气候变化与干旱演变 |
Breshears et al. ( | Proceedings of the National Academy of Sciences | 1 593 | 79.7 | 土壤干旱与植被死亡情况 |
Huntington ( | Journal of Hydrology | 1 591 | 83.7 | 气候变化对水文循环影响 |
Jung et al. ( | Nature | 1 558 | 103.9 | 陆地蒸散发变化与气候响应 |
排名 | 作者关键词 | 出现频次/次 | 排名 | 索引关键词 | 出现频次/次 |
---|---|---|---|---|---|
1 | climate change(气候变化) | 2 357 | 1 | climate-change(气候变化) | 3 837 |
2 | soil moisture(土壤湿度) | 1 318 | 2 | soil-moisture(土壤湿度) | 2 289 |
3 | drought(干旱) | 737 | 3 | temperature(温度) | 1 348 |
4 | precipitation(降水量) | 306 | 4 | precipitation(降水量) | 1 127 |
5 | evapotranspiration(蒸散量) | 293 | 5 | variability(变异性) | 1 068 |
6 | remote sensing(遥感) | 278 | 6 | model(模型) | 957 |
7 | soil respiration(土壤呼吸作用) | 226 | 7 | responses(响应) | 889 |
8 | soil temperature(土壤温度) | 217 | 8 | vegetation(植被) | 857 |
9 | temperature(温度) | 206 | 9 | water(水分) | 853 |
10 | soil water content(土壤含水量) | 197 | 10 | drought(干旱) | 803 |
表8 气候变化与土壤墒情关系主题文献前10名高频关键词分析
Tab.8 The top 10 high-frequency keyword analysis of the relationship between climate change and soil moisture
排名 | 作者关键词 | 出现频次/次 | 排名 | 索引关键词 | 出现频次/次 |
---|---|---|---|---|---|
1 | climate change(气候变化) | 2 357 | 1 | climate-change(气候变化) | 3 837 |
2 | soil moisture(土壤湿度) | 1 318 | 2 | soil-moisture(土壤湿度) | 2 289 |
3 | drought(干旱) | 737 | 3 | temperature(温度) | 1 348 |
4 | precipitation(降水量) | 306 | 4 | precipitation(降水量) | 1 127 |
5 | evapotranspiration(蒸散量) | 293 | 5 | variability(变异性) | 1 068 |
6 | remote sensing(遥感) | 278 | 6 | model(模型) | 957 |
7 | soil respiration(土壤呼吸作用) | 226 | 7 | responses(响应) | 889 |
8 | soil temperature(土壤温度) | 217 | 8 | vegetation(植被) | 857 |
9 | temperature(温度) | 206 | 9 | water(水分) | 853 |
10 | soil water content(土壤含水量) | 197 | 10 | drought(干旱) | 803 |
主题聚类 | 热点主题(中文译名,词频)(词频≥50) |
---|---|
聚类1:土壤-气候相互作用、土壤生态系统管理 | soil respiration(土壤呼吸作用,226),soil temperature(土壤温度,217),temperature(温度,206),soil water content(土壤含水量,197),global warming(全球变暖,172),permafrost(永久冻土,133),Tibetan Plateau(青藏高原,133),grassland(草地,129),warming(变暖,114),nitrous oxide(氧化亚氮,103),carbon cycle(碳循环,89),carbon dioxide(二氧化碳,88),global change(全球变化,85),soil organic carbon(土壤有机碳,82),nitrogen(氮,76),methane(甲烷,74),soil(土壤,64),carbon sequestration(碳汇,63),climate warming(气候变暖,61),Arctic(北极圈,60),greenhouse gases(温室气体,60),Alpine Meadow(高寒草甸,58),carbon(碳,57),modelling(建模,56),Qinghai-Tibet Plateau(青藏高原,56),biochar(生物炭,51),temperature sensitivity(温度灵敏度,51),tundra(冻土带,51) |
聚类2:水文气象与干旱监测、气候数据分析与生态模型应用 | soil moisture(土壤湿度,1 312),drought(干旱,737),remote sensing(遥感,278),climate variability(气候变异性,167),NDVI (归一化植被指数,119),rainfall(降雨量,91),agriculture(农业,91),groundwater(地下水,82),China(中国,78),GRACE(重力恢复与气候实验卫星,76),machine learning(机器学习,71),MODIS(中分辨率成像光谱仪,63),extreme events(极端事件,55),land surface model(陆面模型,54),SMAP(土壤水分主动/被动卫星,53),atmosphere-land interaction(大气-陆地相互作用,52),ENSO(厄尔尼诺-南方涛动,52),CMIP6(第六次耦合模式比较项目,52) |
聚类3:农林水资源管理、生态系统生理性响应(生产力与生物多样性等) | irrigation(灌溉,132),transpiration(蒸腾作用,108),vegetation(植被,108),water use efficiency(水分利用效率,107),water stress(水分胁迫,95),climate(气候,90),photosynthesis(光合作用,85),drought stress(干旱胁迫,77),stomatal conductance(气孔导度,60),water availability(水资源可用性,59),biomass(生物量,58),microclimate(微气候,58),sap flow(树干液流,53),yield(产量,53),soil moisture content(土壤含水量,51) |
聚类4:气候变化下的水土资源模拟与适应策略 | climate change(气候变化,2 356),evapotranspiration(蒸散量,293),hydrology(水文学,130),water balance(水量平衡,120),runoff(径流,89),streamflow(河流流量,73),SWAT(水土评价模型,64),land use(土地利用,59),Loess Plateau(黄土高原,56),water resources(水资源,56) |
聚类5:生态系统通量交换的过程与参数 | eddy covariance(涡动协方差,90),ecosystem respiration(生态系统呼吸,54) |
聚类6:植被季节性水循环 | phenology(物候学,99),ecohydrology(生态水文学,80),soil water(土壤水分,57) |
聚类7:气象及自然灾害 | precipitation(降水量,306),wildfire(野火,51) |
表9 气候变化与土壤墒情关系的研究热点主题分布
Tab.9 Hot topic distribution of research on relationship between climate change and soil moisture
主题聚类 | 热点主题(中文译名,词频)(词频≥50) |
---|---|
聚类1:土壤-气候相互作用、土壤生态系统管理 | soil respiration(土壤呼吸作用,226),soil temperature(土壤温度,217),temperature(温度,206),soil water content(土壤含水量,197),global warming(全球变暖,172),permafrost(永久冻土,133),Tibetan Plateau(青藏高原,133),grassland(草地,129),warming(变暖,114),nitrous oxide(氧化亚氮,103),carbon cycle(碳循环,89),carbon dioxide(二氧化碳,88),global change(全球变化,85),soil organic carbon(土壤有机碳,82),nitrogen(氮,76),methane(甲烷,74),soil(土壤,64),carbon sequestration(碳汇,63),climate warming(气候变暖,61),Arctic(北极圈,60),greenhouse gases(温室气体,60),Alpine Meadow(高寒草甸,58),carbon(碳,57),modelling(建模,56),Qinghai-Tibet Plateau(青藏高原,56),biochar(生物炭,51),temperature sensitivity(温度灵敏度,51),tundra(冻土带,51) |
聚类2:水文气象与干旱监测、气候数据分析与生态模型应用 | soil moisture(土壤湿度,1 312),drought(干旱,737),remote sensing(遥感,278),climate variability(气候变异性,167),NDVI (归一化植被指数,119),rainfall(降雨量,91),agriculture(农业,91),groundwater(地下水,82),China(中国,78),GRACE(重力恢复与气候实验卫星,76),machine learning(机器学习,71),MODIS(中分辨率成像光谱仪,63),extreme events(极端事件,55),land surface model(陆面模型,54),SMAP(土壤水分主动/被动卫星,53),atmosphere-land interaction(大气-陆地相互作用,52),ENSO(厄尔尼诺-南方涛动,52),CMIP6(第六次耦合模式比较项目,52) |
聚类3:农林水资源管理、生态系统生理性响应(生产力与生物多样性等) | irrigation(灌溉,132),transpiration(蒸腾作用,108),vegetation(植被,108),water use efficiency(水分利用效率,107),water stress(水分胁迫,95),climate(气候,90),photosynthesis(光合作用,85),drought stress(干旱胁迫,77),stomatal conductance(气孔导度,60),water availability(水资源可用性,59),biomass(生物量,58),microclimate(微气候,58),sap flow(树干液流,53),yield(产量,53),soil moisture content(土壤含水量,51) |
聚类4:气候变化下的水土资源模拟与适应策略 | climate change(气候变化,2 356),evapotranspiration(蒸散量,293),hydrology(水文学,130),water balance(水量平衡,120),runoff(径流,89),streamflow(河流流量,73),SWAT(水土评价模型,64),land use(土地利用,59),Loess Plateau(黄土高原,56),water resources(水资源,56) |
聚类5:生态系统通量交换的过程与参数 | eddy covariance(涡动协方差,90),ecosystem respiration(生态系统呼吸,54) |
聚类6:植被季节性水循环 | phenology(物候学,99),ecohydrology(生态水文学,80),soil water(土壤水分,57) |
聚类7:气象及自然灾害 | precipitation(降水量,306),wildfire(野火,51) |
图3 气候变化与土壤墒情关系研究的作者关键词聚类与共现网络分析图谱
Fig.3 Cluster and co-occurrence network analysis of author keywords in studies on the relationship between climate change and soil moisture
图4 1994—2023年气候变化与土壤墒情关系研究的关键词的时间演变与出现频率 (蓝色圆形符号的大小表示关键词出现频率的高低)
Fig.4 Temporal evolution and frequency analysis of keywords of the relationship between climate change and soil moisture during 1994-2023 (The size of the blue circular symbols represents the frequency of keyword occurrences)
[1] | 郭冬, 吐尔逊·哈斯木, 吴秀兰, 等, 2022. 四种气象干旱指数在新疆区域适用性研究[J]. 沙漠与绿洲气象, 16(3): 90-101. |
[2] | 郎莹, 汪明, 2015. 春、夏季土壤水分对连翘光合作用的影响[J]. 生态学报, 35(9): 3 043-3 051 |
[3] |
刘兴忠, 胡春, 何超, 等, 2024. 基于NDVI-LST模型的四川攀西地区近20 a干旱演变特征[J]. 干旱气象, 42(2): 180-186.
DOI |
[4] | 全国气象仪器与观测方法标准化技术委员会, 2017. 土壤水分观测频域反射法:GB/T 33705—2017[S]. 北京: 中国标准出版社. |
[5] |
沙莎, 王丽娟, 王小平, 等, 2024. 基于温度植被干旱指数(TVDI)的甘肃省农业干旱监测方法研究[J]. 干旱气象, 42(1): 27-38.
DOI |
[6] | 王大龙, 舒英格, 2017. 土壤含水量测定方法研究进展[J]. 山地农业生物学报, 36(2): 61-65. |
[7] |
王胜, 张强, 张良, 等, 2024. 旱区陆面非降水性水分研究进展和展望[J]. 干旱气象, 42(1): 1-10.
DOI |
[8] | 王姝, 张亮, 朱红秀, 等, 2024. 2022年7—8月干旱对川西高原植被长势的影响[J]. 高原山地气象研究, 44(1): 94-103. |
[9] | 武荣盛, 侯琼, 杨玉辉, 等, 2021. 多时间尺度气象干旱指数在内蒙古典型草原的适应性研究[J]. 干旱气象, 39(2): 177-184. |
[10] |
袁源, 李璐含, 胡伟, 等, 2023. 青藏高原土壤湿度-气候相互影响研究进展[J]. 冰川冻土, 45(2): 341-354.
DOI |
[11] | 张学礼, 胡振琪, 初士立, 2005. 土壤含水量测定方法研究进展[J]. 土壤通报, 36(1): 118-123. |
[12] | 张燕, 王雪姣, 张新, 等, 2024. 北疆绿洲农业区气象干旱指数的确定及干旱特征分析[J]. 沙漠与绿洲气象, 18(4): 133-142. |
[13] | 赵鸿, 李凤民, 熊友才, 等, 2008. 土壤干旱对作物生长过程和产量影响的研究进展[J]. 干旱气象, 26(3): 67-71. |
[14] | 赵会超, 2020. 不同类型干旱的时空变化规律及其关系研究[D]. 杨凌: 西北农林科技大学. |
[15] | 周鑫原, 吕世华, 罗江鑫, 2022. CMIP6 BCC等模式对青藏高原土壤冻融模拟性能分析[J]. 高原山地气象研究, 42(2): 82-89. |
[16] | ADE L J, HU L, ZI H B, et al, 2018. Effect of snowpack on the soil bacteria of alpine meadows in the Qinghai_Tibetan Plateau of China[J]. Catena, 164: 13-22. |
[17] | AKINREMI O O, MCGINN S M, 1996. Usage of soil moisture models in agronomic research[J]. Canadian Journal of Soil Science, 76(3): 285-295. |
[18] | AL-YAARI A, WIGNERON J P, DORIGO W, et al, 2019. Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements[J]. Remote Sensing of Environment, 224: 289-303. |
[19] | ARIA M, CUCCURULLO C, 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics, 11(4): 959-975. |
[20] | ATCHLEY A L, MAXWELL R M, 2011. Influences of subsurface heterogeneity and vegetation cover on soil moisture, surface temperature and evapotranspiration at hillslope scales[J]. Hydrogeology Journal, 19(2): 289-305. |
[21] | BABAEIAN E, SADEGHI M, JONES S B, et al, 2019. Ground, proximal, and satellite remote sensing of soil moisture[J]. Reviews of Geophysics, 57(2): 530-616. |
[22] | BECK H E, PAN M, MIRALLES D G, et al, 2021. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors[J]. Hydrology and Earth System Sciences, 25(1): 17-40. |
[23] | BERG A, SHEFFIELD J, 2018. Climate change and drought: The soil moisture perspective[J]. Current Climate Change Reports, 4(2): 180-191. |
[24] | BORNMANN L, MUTZ R, DANIEL H D, 2008. Are there better indices for evaluation purposes than the h index?A comparison of nine different variants of the h index using data from biomedicine[J]. Journal of the American Society for Information Science and Technology, 59(5): 830-837. |
[25] | BRESHEARS D D, COBB N S, RICH P M, et al, 2005. Regional vegetation die-off in response to global-change-type drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 102(42): 15 144-15 148 |
[26] | CHEN H Y, ZOU J Y, CUI J, et al, 2018. Wetland drying increases the temperature sensitivity of soil respiration[J]. Soil Biology and Biochemistry, 120: 24-27. |
[27] | CORNWELL A R, DANNY HARVEY L D, 2007. Soil moisture: A residual problem underlying AGCMs[J]. Climatic Change, 84(3): 313-336. |
[28] | DAI A G, 2011. Drought under global warming: A review[J]. WIREs Climate Change, 2(1): 45-65. |
[29] | DAI A G, 2013. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 3: 52-58. |
[30] | DENISSEN J M C, TEULING A J, PITMAN A J, et al, 2022. Widespread shift from ecosystem energy to water limitation with climate change[J]. Nature Climate Change, 12: 677-684. |
[31] | DERMODY O, WELTZIN J F, ENGEL E C, et al, 2007. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem?[J]. Plant and Soil, 301(1/2): 255-266. |
[32] | DINIZ B P, GUIMARAES C M, KINOUCHI O, et al, 2005. An index to quantify an individual’s scientific research valid across disciplines[J]. ArXiv e-Prints: physics/0509048. DOI: 10.1007/s11192-006-0090-4. |
[33] | DORIGO W, WAGNER W, ALBERGEL C, et al, 2017. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions[J]. Remote Sensing of Environment, 203: 185-215. |
[34] | EGGHE L, 2006. An improvement of the h-index: The g-index[J]. ISSI Newsletter, 2(1): 8-9. |
[35] | GAO L, SHAO M G, 2012. Temporal stability of soil water storage in diverse soil layers[J]. Catena, 95: 24-32. |
[36] | HORTON R M, MANKIN J S, LESK C, et al, 2016. A review of recent advances in research on extreme heat events[J]. Current Climate Change Reports, 2(4): 242-259. |
[37] | HUNTINGTON T G, 2006. Evidence for intensification of the global water cycle: Review and synthesis[J]. Journal of Hydrology, 319(1/2/3/4): 83-95. |
[38] | JUNG M, REICHSTEIN M, CIAIS P, et al, 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 467: 951-954. |
[39] | LEEPER R D, PETERSEN B, PALECKI M A, et al, 2021. Exploring the use of standardized soil moisture as a drought indicator[J]. Journal of Applied Meteorology and Climatology, 60(8): 1 021-1 033 |
[40] | LI X W, GAO X Z, CHANG Y T, et al, 2018. Water storage variations and their relation to climate factors over Central Asia and surrounding areas over 30 years[J]. Water Science and Technology: Water Supply, 18(5): 1 564-1 580 |
[41] | LIAN X, PIAO S L, CHEN A P, et al, 2021. Multifaceted characteristics of dryland aridity changes in a warming world[J]. Nature Reviews Earth & Environment, 2: 232-250. |
[42] | LINNENLUECKE M K, MARRONE M, SINGH A K, 2020. Conducting systematic literature reviews and bibliometric analyses[J]. Australian Journal of Management, 45(2): 175-194. |
[43] | LIU S, SUN Y P, GAO X L, et al, 2019. Knowledge domain and emerging trends in Alzheimer’s disease: A scientometric review based on CiteSpace analysis[J]. Neural Regeneration Research, 14(9): 1 643-1 650 |
[44] | MISHRA A K, SINGH V P, 2010. A review of drought concepts[J]. Journal of Hydrology, 391(1/2): 202-216. |
[45] | OCHSNER T E, COSH M H, CUENCA R H, et al, 2013. State of the art in large‐scale soil moisture monitoring[J]. Soil Science Society of America Journal, 77(6): 1 888-1 919 |
[46] |
RIGDEN A J, MUELLER N D, HOLBROOK N M, et al, 2020. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields[J]. Nature Food, 1(2): 127-133.
DOI PMID |
[47] | ROBOCK A, VINNIKOV K Y, SRINIVASAN G, et al, 2000. The global soil moisture data bank[J]. Bulletin of the American Meteorological Society, 81(6): 1 281-1 299 |
[48] | RODRÍGUEZ-SOLER R, URIBE-TORIL J, DE PABLO VALENCIANO J, 2000. Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool[J]. Land Use Policy, 97: 104787. DOI: 10.1016/j.landusepol.2020.104787. |
[49] |
SARKER U, OBA S, 2018. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content[J]. Food Chemistry, 252: 72-83.
DOI PMID |
[50] | SENEVIRATNE S I, CORTI T, DAVIN E L, et al, 2010. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 99(3/4): 125-161. |
[51] | SITCH S, SMITH B, PRENTICE I C, et al, 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 9(2): 161-185. |
[52] | STOCKER B D, ZSCHEISCHLER J, KEENAN T F, et al, 2019. Drought impacts on terrestrial primary production underestimated by satellite monitoring[J]. Nature Geoscience, 12: 264-270. |
[53] | TRENBERTH K E, 2011. Changes in precipitation with climate change[J]. Climate Research, 47(1): 123-138. |
[54] | VAN DER MOLEN M K, DOLMAN A J, CIAIS P, et al, 2011. Drought and ecosystem carbon cycling[J]. Agricultural and Forest Meteorology, 151(7): 765-773. |
[55] |
VAN ECK N J, WALTMAN L, 2010. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 84(2): 523-538.
PMID |
[56] | VEREECKEN H, AMELUNG W, BAUKE S L, et al, 2022. Soil hydrology in the earth system[J]. Nature Reviews Earth & Environment, 3: 573-587. |
[57] | VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I, 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 23(7): 1 696-1 718 |
[58] | VOGEL M M, ORTH R, CHERUY F, et al, 2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks[J]. Geophysical Research Letters, 44(3): 1 511-1 519 |
[59] | WALVOORD M A, KURYLYK B L, 2016. Hydrologic impacts of thawing permafrost: A review[J]. Vadose Zone Journal, 15(6): 1-20. |
[60] | WANG J Z, DING J L, YU D L, et al, 2020. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI[J]. Science of the Total Environment, 707: 136092. DOI: 10.1016/j.scitotenv.2019.136092. |
[61] | ZHAO C L, MENG X H, LI Y Q, et al, 2022. Impact of soil moisture on afternoon convection triggering over the Tibetan Plateau based on 1-D boundary layer model[J]. Journal of Geophysical Research: Atmospheres, 127(2): e2021jd035591. DOI: 10.1029/2021JD035591. |
[62] | ZIADAT F M, TAIMEH A Y, 2013. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment[J]. Land Degradation & Development, 24(6): 582-590. |
[1] | 陈巧, 王冰, 熊坤, 毛洋洋, 余卫东. 未来气候情景下河南省优质小麦农业气候资源变化分析[J]. 干旱气象, 2024, 42(6): 965-975. |
[2] | 杨斐, 冯祥, 张飞民, 王澄海. 过去40 a来祁连山地区植被变化特征及其与气候的关系[J]. 干旱气象, 2024, 42(3): 385-394. |
[3] | 曹晓云, 周秉荣, 周华坤, 乔斌, 颜玉倩, 赵彤, 陈奇, 赵慧芳, 于红妍. 气候变化对青藏高原植被生态系统的影响研究进展[J]. 干旱气象, 2022, 40(6): 1068-1080. |
[4] | 范进进, 秦鹏程, 史瑞琴, 李梦蓉, 杜良敏. 气候变化背景下湖北省高温干旱复合灾害变化特征[J]. 干旱气象, 2022, 40(5): 780-790. |
[5] | 陈笑晨, 唐振飞, 陈锡宽, 郑潮宇, 李欣欣, 杨婷. 基于CMIP6的福建省极端气温预估[J]. 干旱气象, 2022, 40(3): 415-423. |
[6] | 吴斌, 钱业, 王瑞芳, 赵鑫, 金磊. 全球气候模式对影响西北太平洋台风强度的大尺度环境因子的模拟评估[J]. 干旱气象, 2021, 39(3): 466-479. |
[7] | 刘鸣彦, 房一禾, 孙凤华, 赵春雨, 侯依玲, 崔妍, 周晓宇. 气候变化和人类活动对太子河流域径流变化的贡献[J]. 干旱气象, 2021, 39(2): 244-251. |
[8] | 赵琳, 王长科, 艾婉秀. 北疆地区公众对气候变化认知与适应的性别差异分析[J]. 干旱气象, 2021, 39(1): 168-174. |
[9] | 李裕, 王小恒, 罗兴平, 康淑荷, 陈琛, 张强. 气候变化对半干旱地区作物微量元素利用率影响研究进展[J]. 干旱气象, 2020, 38(6): 895-899. |
[10] | 赵慧, 郭庆元, 马鹏程, 王丽娜, 刘丽伟, 刘卫平, 李常德. 陇东南地区近50 a极端低温事件演变特征及环流背景[J]. 干旱气象, 2020, 38(6): 900-908. |
[11] | 刘楚薇, 连鑫博, 黄建平. 我国臭氧污染时空分布及其成因研究进展[J]. 干旱气象, 2020, 38(03): 355-361. |
[12] | 孙银川1,2,王素艳1,2,李浩3,郑广芬1,王璠2,官景得1. 宁夏六盘山区夏季避暑旅游气候舒适度分析[J]. 干旱气象, 2018, 36(6): 1035-. |
[13] | 张飞民,王澄海,谢国辉,孔维政. 气候变化背景下未来全球陆地风、光资源的预估[J]. 干旱气象, 2018, 36(5): 725-732. |
[14] | 迪丽努尔·托列吾别克,李栋梁. 近115 a中亚干湿气候变化研究[J]. 干旱气象, 2018, 36(2): 185-195. |
[15] | 滕水昌,张敏,滕杰,乔琴. 1951—2016年甘肃乌鞘岭气候变化特征[J]. 干旱气象, 2018, 36(1): 75-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: