| [1] |
牛若芸, 翟盘茂, 佘万明, 2007. 森林火险气象指数的应用研究[J]. 应用气象学报, 18(4):479-489.
|
| [2] |
牛若芸, 翟盘茂, 孙明华, 2006. 森林火险气象指数及其构建方法回顾[J]. 气象, 32(12):3-9.
|
| [3] |
田永丽, 王秋华, 2019. 气象条件异常对美国加利福尼亚州山火的影响[J]. 森林防火(3):21-25.
|
| [4] |
严中伟, 华丽娟, 钱诚, 等, 2024. 气候统计方法和应用[M]. 北京: 北京科学出版社:16-17.
|
| [5] |
郑伟, 陈洁, 闫华, 等, 2020. FY-3D/MERSI-II全球火点监测产品及其应用[J]. 遥感学报, 24(5):521-530.
|
| [6] |
ABATZOGLOU J T, KOLDEN C A, CULLEN A C, et al, 2025. Climate change has increased the odds of extreme regional forest fire years globally[J]. Nature Communications, 16: 6390. DOI:10.1038/s41467-025-61608-1.
|
| [7] |
ABATZOGLOU J T, WILLIAMS A P, 2016. Impact of anthropogenic climate change on wildfire across western US forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(42): 11 770-11 775.
|
| [8] |
ALLEN R G, PEREIRA L S, RAES D, et al, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[M]. Rome: FAO: 300.
|
| [9] |
AYARS J, KRAMER H A, JONES G M, 2023. The 2020 to 2021 California megafires and their impacts on wildlife habitat[J]. Proceedings of the National Academy of Sciences of the United States of America, 120(48): e2312909120. DOI:10.1073/pnas.2312909120.
|
| [10] |
BOWMAN D M J S, KOLDEN C A, ABATZOGLOU J T, et al, 2020. Vegetation fires in the anthropocene[J]. Nature Reviews Earth & Environment, 1(10): 500-515.
|
| [11] |
BOWMAN D M J S, WILLIAMSON G J, ABATZOGLOU J T, et al, 2017. Human exposure and sensitivity to globally extreme wildfire events[J]. Nature Ecology & Evolution, 1: 58. DOI:10.1038/s41559-016-0058.
|
| [12] |
BROWN P T, HANLEY H, MAHESH A, et al, 2023. Climate warming increases extreme daily wildfire growth risk in California[J]. Nature, 621(7980):760-766.
DOI
|
| [13] |
CHEN X D, LEUNG L R, DONG L, 2023. Antecedent hydrometeorological conditions of wildfire occurrence in the western U.S. in a changing climate[J]. Journal of Geophysical Research: Atmospheres, 128: e2023JD039136. DOI:10.1029/2023JD039136.
|
| [14] |
CUNNINGHAM C X, WILLIAMSON G J, BOWMAN D M J S, 2024. Increasing frequency and intensity of the most extreme wildfires on Earth[J]. Nature Ecology & Evolution, 8(8): 1 420-1 425.
|
| [15] |
DONG C Y, WILLIAMS A P, ABATZOGLOU J T, et al, 2022. The season for large fires in Southern California is projected to lengthen in a changing climate[J]. Communications Earth & Environment, 3:22. DOI:10.1038/s43247-022-00344-6.
|
| [16] |
DONG L, LEUNG L R, QIAN Y, et al, 2021. Meteorological environments associated with California wildfires and their potential roles in wildfire changes during 1984-2017[J]. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033180. DOI:10.1029/2020JD033180.
|
| [17] |
EFRON B, TIBSHIRANI R J, 1994. An introduction to the bootstrap[M]. New York: Chapman and Hall.
|
| [18] |
EYRING V, BONY S, MEEHL G A, et al, 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 9(5): 1 937-1 958.
DOI
URL
|
| [19] |
GINCHEVA A, PAUSAS J G, TORRES-VÁZQUEZ M Á, et al, 2024. The interannual variability of global burned area is mostly explained by climatic drivers[J]. Earth's Future, 12(7). DOI: 10.1029/2023EF004334.
|
| [20] |
HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1 999-2 049.
DOI
URL
|
| [21] |
JAIN P, CASTELLANOS-ACUNA D, COOGAN S C P, et al, 2022. Observed increases in extreme fire weather driven by atmospheric humidity and temperature[J]. Nature Climate Change, 12(1): 63-70.
DOI
|
| [22] |
JUNG M, KOIRALA S, WEBER U, et al, 2019. The FLUXCOM ensemble of global land-atmosphere energy fluxes[J]. Scientific Data, 6: 74. DOI:10.1038/s41597-019-0076-8.
PMID
|
| [23] |
LI L J, DONG L, XIE J B, et al, 2020. The GAMIL3: Model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 125(15): e2020JD032574. DOI:10.1029/2020JD032574.
|
| [24] |
LUKE R H, MCARTHUR A G, 1978. Bush Fires in Australia[R]. Canberra: Australian Government Publishing Service.
|
| [25] |
MADAKUMBURA G D, MORITZ M A, MCKINNON K A, et al, 2025. Anthropogenic warming drives earlier wildfire season onset in California[J]. Science Advances, 11(32): eadt2041. DOI:10.1126/sciadv.adt2041.
|
| [26] |
MASS C F, OVENS D, 2019. The northern California wildfires of 8-9 October 2017: The role of a major downslope wind event[J]. Bulletin of the American Meteorological Society, 100(2): 235-256.
DOI
URL
|
| [27] |
OSTOJA S M, CRIMMINS A R, BYRON R G, et al, 2023. Focus on western wildfires The Fifth National Climate Assessment[M]. Washington, District of Columbia: United States Government Publishing Office.
|
| [28] |
QIU M H, CHEN D Y, KELP M, et al, 2025. The rising threats of wildland-urban interface fires in the era of climate change: The Los Angeles 2025 fires[J]. Innovation, 6(5): 100835. DOI:10.1016/j.xinn.2025.100835.
|
| [29] |
RADELOFF V C, MOCKRIN M H, HELMERS D, et al, 2023. Rising wildfire risk to houses in the United States, especially in grasslands and shrublands[J]. Science, 382(6671):702-707.
DOI
PMID
|
| [30] |
RICHARDSON D, BLACK A S, IRVING D, et al, 2022. Global increase in wildfire potential from compound fire weather and drought[J]. NPJ Climate and Atmospheric Science, 5: 23. DOI:10.1038/s41612-022-00248-4.
|
| [31] |
STONE D A, CHRISTIDIS N, FOLLAND C, et al, 2019. Experiment design of the international CLIVAR C20C+ detection and attribution project[J]. Weather and Climate Extremes, 24:100206. DOI:10.1016/j.wace.2019.100206.
|
| [32] |
SWAIN D L, 2021. A shorter, sharper rainy season amplifies California wildfire risk[J]. Geophysical Research Letters, 48(5): e2021GL092843. DOI:10.1029/2021GL092843.
|
| [33] |
UNITED NATIONS ENVIRONMENT PROGRAM, 2022. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment[R]. Nairobi: UNEP.
|
| [34] |
VAN WAGNER C E, 1987. Development and structure of the Canadian Forest Fire Weather Index System[R]. Ottawa: Canadian Forestry Service.
|
| [35] |
VITOLO C, DI GIUSEPPE F, BARNARD C, et al, 2020. ERA5-based global meteorological wildfire danger maps[J]. Scientific Data, 7(1): 216. DOI:10.1038/s41597-020-0554-z.
PMID
|
| [36] |
WILLIAMS A P, ABATZOGLOU J T, GERSHUNOV A, et al, 2019. Observed impacts of anthropogenic climate change on wildfire in California[J]. Earth’s Future, 7(8):892-910.
DOI
URL
|
| [37] |
ZHANG L X, YU X J, ZHOU T J, et al, 2023. Understanding and attribution of extreme heat and drought events in 2022: Current situation and future challenges[J]. Advances in Atmospheric Sciences, 40(11):1 941-1 951.
DOI
|
| [38] |
ZHANG L X, ZHOU T J, ZHANG X, et al, 2024. Attribution of the extreme 2022 summer drought along the Yangtze River valley in China based on detection and attribution system of Chinese academy of sciences[J]. Bulletin of the American Meteorological Society, 105(7): E1062-E1067.
DOI
URL
|
| [39] |
ZHUANG Y Z, FU R, SANTER B D, et al, 2021. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 118(45): e2111875118. DOI:10.1073/pnas.2111875118.
|