| [1] |
郝立生, 何丽烨, 马宁, 等, 2023. 厄尔尼诺事件年际变化与我国华北夏季干旱的关系[J]. 干旱气象, 41(6): 829-840.
|
| [2] |
胡海清, 陆昕, 孙龙, 等, 2016. 气温和空气相对湿度对森林地表细小死可燃物平衡含水率和时滞的影响[J]. 植物生态学报, 40(3): 221-235.
DOI
|
| [3] |
李忆平, 张金玉, 岳平, 等, 2022. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象, 40(5): 733-747.
DOI
|
| [4] |
彭道福, 乐旭, 朱君, 等, 2023. 2019—2020年北极野火极端事件的气象成因解析[J]. 气候与环境研究, 28(2): 195-206.
|
| [5] |
田永丽, 王秋华, 2019. 气象条件异常对美国加利福尼亚州山火的影响[J]. 森林防火(3): 21-25.
|
| [6] |
王健疆, 马浩, 余丽萍, 等, 2021. 2019年浙江省秋旱大气环流特征分析[J]. 干旱气象, 39(1): 1-7.
|
| [7] |
吴东佑, 2024. 气象条件对极端野火烟尘气溶胶的影响及反馈效应研究[D]. 兰州: 兰州大学.
|
| [8] |
颜鹏程, 李忆平, 曾鼎文, 等, 2024. 2024年4—6月我国区域性高温干旱特征及其影响因子[J]. 干旱气象, 42(4): 507-518.
DOI
|
| [9] |
周煜, 2022. 不同ENSO位相下亚马逊地区野火气溶胶气候效应的研究[D]. 南京: 南京信息工程大学.
|
| [10] |
DONG L, LEUNG L R, QIAN Y, et al, 2021. Meteorological environments associated with California wildfires and their potential roles in wildfire changes during 1984-2017[J]. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033180. DOI: 10.1029/2020JD033180.
|
| [11] |
FREEBORN P H, JOLLY W M, COCHRANE M A, 2016. Impacts of changing fire weather conditions on reconstructed trends in U.S. wildland fire activity from 1979 to 2014[J]. Journal of Geophysical Research: Biogeosciences, 121(11): 2 856-2 876.
DOI
URL
|
| [12] |
GALANIS M, RAO K, YAO X L, et al, 2021. DamageMap: A post-wildfire damaged buildings classifier[J]. International Journal of Disaster Risk Reduction, 65: 102540. DOI: 10.1016/j.ijdrr.2021.102540.
|
| [13] |
GIRARDIN M P, WOTTON B M, 2009. Summer moisture and wildfire risks across Canada[J]. Journal of Applied Meteorology and Climatology, 48(3): 517-533.
DOI
URL
|
| [14] |
GOSS M, SWAIN D L, ABATZOGLOU J T, et al, 2020. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California[J]. Environmental Research Letters, 15(9): 094016. DOI: 10.1088/1748-9326/ab83a7.
|
| [15] |
GUMBER A, REID J S, HOLZ R E, et al, 2023. Assessment of severe aerosol events from NASA MODIS and VIIRS aerosol products for data assimilation and climate continuity[J]. Atmospheric Measurement Techniques, 16(10): 2 547-2 573.
DOI
URL
|
| [16] |
HE Q Q, ZHANG M, HUANG B, et al, 2017. MODIS 3 km and 10 km aerosol optical depth for China: Evaluation and comparison[J]. Atmospheric Environment, 153:150-162.
DOI
URL
|
| [17] |
HERNANDEZ C, DROBINSKI P, TURQUETY S, 2015. Impact of wildfire-induced land cover modification on local meteorology: A sensitivity study of the 2003 wildfires in Portugal[J]. Atmospheric Research, 164: 49-64.
|
| [18] |
HUANG B Y, THORNE P W, BANZON V F, et al, 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons[J]. Journal of Climate, 30(20): 8 179-8 205.
DOI
URL
|
| [19] |
JOLLY W M, COCHRANE M A, FREEBORN P H, et al, 2015. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 6: 7537. DOI: 10.1038/ncomms8537.
PMID
|
| [20] |
KUWAYAMA Y, THOMPSON A, BERNKNOPF R, et al, 2019. Estimating the impact of drought on agriculture using the U.S. drought monitor[J]. American Journal of Agricultural Economics, 101(1): 193-210.
DOI
URL
|
| [21] |
MARTIN J T, PEDERSON G T, WOODHOUSE C A, et al, 2020. Increased drought severity tracks warming in the United States' largest river basin[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(21): 11 328-11 336.
|
| [22] |
MASS C F, OVENS D, 2019. The northern California wildfires of 8-9 October 2017: The role of a major downslope wind event[J]. Bulletin of the American Meteorological Society, 100(2): 235-256.
DOI
URL
|
| [23] |
MORITZ M A, MORAIS M E, SUMMERELL L A, et al, 2005. Wildfires, complexity, and highly optimized tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 102(50): 17 912-17 917.
|
| [24] |
MUÑOZ-SABATER J, DUTRA E, AGUSTÍ-PANAREDA A, et al, 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science, Data, 13(9): 4 349-4 383.
DOI
URL
|
| [25] |
PASCHALIDOU A K, KASSOMENOS P A, 2016. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology[J]. Science of The Total Environment, 539: 536-545.
DOI
URL
|
| [26] |
PENG X B, YU M, CHEN H S, et al, 2023. Projections of wildfire risk and activities under 1.5 ℃ and 2.0 ℃ global warming scenarios[J]. Environmental Research Communications, 5(3): 031002. DOI: 10.1088/2515-7620/acbf13.
|
| [27] |
POLLINA J B, COLLE B A, CHARNEY J J, 2013. Climatology and meteorological evolution of major wildfire events over the northeast United States[J]. Weather and Forecasting, 28: 175-193.
DOI
URL
|
| [28] |
ROTHERMEL R C, 1972. A mathematical model for predicting fire spread in wildland fuels[R]. Forest Service Research Paper, INT-115. Ogden, UT: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station: 40 p.
|
| [29] |
RUNNING S W, 2006. Is global warming causing more, larger wildfires?[J]. Science, 313(5789): 927-928.
DOI
URL
|
| [30] |
SMITH K H, TYRE A J, TANG Z H, et al, 2020. Calibrating human attention as indicator: Monitoring #drought in the twittersphere[J]. Bulletin of the American Meteorological Society, 101(10): E1801-E1819.
DOI
URL
|
| [31] |
THOMPSON J R, SPIES T A, 2009. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire[J]. Forest Ecology and Management, 258(7): 1 684-1 694.
DOI
URL
|
| [32] |
VAN OLDENBORGH G J, KRIKKEN F, LEWIS S, et al, 2021. Attribution of the Australian bushfire risk to anthropogenic climate change[J]. Natural Hazards and Earth System Sciences, 21(3): 941-960.
|
| [33] |
WILLIAMS A P, ABATZOGLOU J T, GERSHUNOV A, et al, 2019. Observed impacts of anthropogenic climate change on wildfire in California[J]. Earth’s Future, 7(8): 892-910.
DOI
URL
|