干旱气象 ›› 2024, Vol. 42 ›› Issue (6): 878-888.DOI: 10.11755/j.issn.1006-7639-2024-06-0878

• 论文 • 上一篇    下一篇

1981—2023年珠穆朗玛峰地区大气饱和水汽差的时空分布特征

旦增维色1(), 杜军2,3(), 黄志诚3,4, 巴桑2   

  1. 1.西藏自治区拉孜县气象局,拉孜 858100
    2.西藏高原大气环境科学研究所/西藏高原大气环境开放实验室,拉萨 850001
    3.中国气象局墨脱大气水分循环综合观测野外科学试验基地/墨脱国家气候观象台,墨脱 860700
    4.西藏自治区气象信息网络中心,拉萨 850001
  • 收稿日期:2024-04-04 修回日期:2024-12-18 出版日期:2024-12-31 发布日期:2025-01-15
  • 通讯作者: 杜军(1969—),男,正高级工程师,主要从事高原气候与气候变化、生态与农业气象等方面研究。E-mail:dujun0891@163.com
  • 作者简介:旦增维色(1999—),男,助理工程师,主要从事大气探测技术与气象服务等方面研究。E-mail:2046002393@qq.com
  • 基金资助:
    西藏自治区科技计划项目揭榜挂帅专项(XZ202303ZY0002G);第二次青藏高原综合科学考察研究项目(2019QZKK0106)

Spatio-temporal variation of atmospheric vapor pressure deficit in Mt. Qomolangma region from 1981 to 2023

TENTINWOESER1(), DU Jun2,3(), HUANG Zhicheng3,4, PASANG2   

  1. 1. Lhazê County Meteorological Beatun of Xizang Autonomous Region, Lhazê 858100, Xizang, China
    2. Xizang Institute of Plateau Atmospheric and Environmental Science Research/Plateau Atmospheric and Environment Open Laboratory of Xizang, Lhasa 850001, China
    3. CMA Mêdog Field Science Experiment Base for Atmospheric Water Cycle/Mêdog National Climate Observatory, Mêdog, 860700, Xizang, China
    4. Xizang Meteorological Information and Network Centre, Lhasa 850001, China
  • Received:2024-04-04 Revised:2024-12-18 Online:2024-12-31 Published:2025-01-15

摘要:

作为蒸散的主要驱动因子之一,饱和水汽压差(Vapor Pressure Deficit,VPD)反映了大气从地表获取水分的能力。掌握VPD的时空变化特征对于理解区域大气干湿状态对气候变化的响应具有重要意义。本文利用1981—2023年中国珠穆朗玛峰地区(简称“珠峰地区”)11个气象站逐月日照时数、平均气温、平均最高气温、平均最低气温、降水量、相对湿度、水汽压和平均风速等资料,采用气候倾向率、逐步回归分析和Mann-Kendall检验,分析了近43 a珠峰地区VPD的时空分布特征及影响因子。结果表明,珠峰地区年、季平均VPD总体呈西南低、东北高的分布特征,VPD月变化呈双峰型分布,峰值分别出现在6月、9月,最小值出现在1月;季变化表现为夏季>春季>秋季>冬季。近43 a珠峰地区年平均VPD以0.029 kPa·(10 a)-1的速率呈上升趋势,夏季增幅最大;20世纪80、90年代VPD相对较低,以90年代最明显;21世纪最初十年,春秋季VPD偏低、夏冬季VPD偏高;21世纪10年代VPD偏高,特别是夏秋两季;春季和汛期VPD的突变发生在21世纪最初十年的后期,而其他3季和年平均VPD的突变发生在21世纪10年代初。珠峰地区VPD的变化主要由饱和水汽压驱动,尤其是春、秋季。四季和年平均气温显著升高是引起VPD显著增加的主导因子,而汛期水汽压的下降也对VPD增大起到重要作用。


关键词: 珠峰, 饱和水汽压差, 变化趋势, 年代际变化, 气候突变, 影响因子

Abstract:

As one of the main driving factors of evapotranspiration, the VPD (Vapor Pressure Deficit) reflects the atmospheric capacity to extract water from the surface. Understanding the spatio-temporal variation of VPD is crucial for exploring the response of regional atmospheric dryness and wetness to climate change. Based on data from 11 meteorological stations in the Mt. Qomolangma region of China during 1981-2023, including monthly sunshine duration, average air temperature, maximum and minimum air temperature, precipitation, relative humidity, vapor pressure, and wind speed, this study analyzed the spatio-temporal characteristics and influencing factors of VPD using climate tendency rate, stepwise regression, and the Mann-Kendall test. Results show that the annual and seasonal averages of VPD in the Mt. Qomolangma region generally exhibited lower values in the southwest and higher values in the northeast. Monthly VPD showed a bimodal pattern, with peaks in June and September and a minimum in January. Seasonally, VPD was characterized by higher values in summer, followed by spring, autumn, and the lowest in winter. Over the past 43 years, annual VPD increased at a rate of 0.029 kPa·(10 a)-1, with the most significant growth observed in summer. On a decadal scale, VPD values were relatively low in the 1980s and 1990s, particularly during the 1990s. In the 2000s, VPD was lower in spring and autumn and higher in summer and winter. The 2010s saw elevated VPD values across all seasons, especially in summer and autumn. Spring and flood season VPD mutations occurred in the late 2000s, while mutations in the other three seasons and annual averages appeared in the early 2010s. Changes in VPD were primarily driven by saturated water vapor pressure, particularly in spring and autumn. The significant increase in VPD was dominated by rising air temperatures across all seasons and annually. Additionally, the decrease in water vapor pressure during the flood season contributed to the VPD increase.

Key words: Mt.Qomolangma, vapor pressure deficit, change trend, inter-decadal change, climate mutation, impact factors

中图分类号: