Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (2): 242-253.DOI: 10.11755/j.issn.1006-7639-2025-02-0242
• Articles • Previous Articles Next Articles
LI Meng1,2(), ZHU Li1,2(
), ZHANG Yuehan3
Received:
2024-08-11
Revised:
2024-10-30
Online:
2025-04-30
Published:
2025-05-13
通讯作者:
竹利(1984—),男,正高级工程师,主要从事灾害性天气短临预报技术研究。E-mail:275551265@qq.com。
作者简介:
李梦(1990—),女,高级工程师,主要从事应用气象与气象服务方面工作。E-mail:761640401@qq.com。
基金资助:
CLC Number:
LI Meng, ZHU Li, ZHANG Yuehan. Evolution and cause analysis of an extreme rainstorm process in the Sichuan Basin[J]. Journal of Arid Meteorology, 2025, 43(2): 242-253.
李梦, 竹利, 张悦含. 四川盆地一次极端暴雨过程的演变及成因分析[J]. 干旱气象, 2025, 43(2): 242-253.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2025-02-0242
Fig.1 The spatial distribution of the 24-hour precipitation(Unit: mm) in the northeastern region of the Sichuan Basin from 20:00 on 7 to 20:00 on 8 August 2021
Fig.2 Box diagrams of daily rainfall greater than or equal to 100 mm at Quxian Station (a) and Dazhu Station (b) from 1970 to 2023, box diagrams of hourly rainfall greater than or equal to 20 mm at Quxian Station (c) and Dazhu Station (d) from 2004 to 2023
Fig.5 The 500 hPa geopotential height field (blue contours, Unit: dagpm) superimposed with the wind field (wind vectors, Unit: m·s-1), jet stream wind speed (the color shaded, Unit: m·s-1) at 700 hPa and 850 hPa temperature dew point difference (red isolines, Unit: ℃) at 20:00 on 7 (a) and 04:00 on 8 (b) August 2021 (the red triangle is the extreme rainstorm area, the letter D is the low pressure center)
Fig.6 The 500 hPa geopotential height field (blue contours, Unit: dagpm) superimposed with the wind field (wind vectors, Unit: m·s-1), jet stream wind speed (the color shaded, Unit: m·s-1) and temperature field (red isolines, Unit: ℃) at 850 hPa at 08:00 (a) and 10:00 (b) on 8 August 2021
极端降雨过程 | 日降雨量/mm | 探空站 | 700 hPa比湿/ (g·kg-1) | 850 hPa比湿/ (g·kg-1) | 925 hPa比湿/ (g·kg-1) | 700 hPa假相 当位温/K | 0 ℃层高度/km | 垂直风切变/(m·s-1) |
---|---|---|---|---|---|---|---|---|
1991-06-30 | 290.2 | 重庆站 | 12.6 | 18.4 | 357.1 | 5.7 | 0.94 | |
1998-09-16 | 259.7 | 武都站 | 9.6 | 11.0 | 346.0 | 5.6 | 0.64 | |
2004-09-04 | 272.9 | 重庆站 | 12.6 | 17.3 | 19.1 | 355.8 | 5.7 | 0.31 |
2004-09-05 | 257.0 | 达州站 | 13.4 | 16.3 | 18.0 | 358.4 | 5.7 | 0.67 |
2010-07-17 | 255.8 | 达州站 | 12.6 | 19.6 | 22.9 | 355.8 | 5.7 | 0.68 |
2011-09-17 | 250.4 | 汉中站 | 9.6 | 12.6 | 14.0 | 343.0 | 4.7 | 1.47 |
2014-09-13 | 269.9 | 重庆站 | 11.8 | 17.3 | 19.1 | 353.3 | 5.3 | 0.19 |
2021-08-07 | 334.0 | 重庆站 | 14.4 | 18.5 | 21.0 | 363.9 | 4.8 | 0.64 |
2021-08-22 | 251.2 | 达州站 | 12.5 | 17.9 | 19.0 | 357.1 | 5.7 | 0.50 |
Tab.1 The statistics of environment physical quantities at 20:00 before the 9 extreme heavy rainfall processes in the northeastern region of Sichuan from 1991 to 2021
极端降雨过程 | 日降雨量/mm | 探空站 | 700 hPa比湿/ (g·kg-1) | 850 hPa比湿/ (g·kg-1) | 925 hPa比湿/ (g·kg-1) | 700 hPa假相 当位温/K | 0 ℃层高度/km | 垂直风切变/(m·s-1) |
---|---|---|---|---|---|---|---|---|
1991-06-30 | 290.2 | 重庆站 | 12.6 | 18.4 | 357.1 | 5.7 | 0.94 | |
1998-09-16 | 259.7 | 武都站 | 9.6 | 11.0 | 346.0 | 5.6 | 0.64 | |
2004-09-04 | 272.9 | 重庆站 | 12.6 | 17.3 | 19.1 | 355.8 | 5.7 | 0.31 |
2004-09-05 | 257.0 | 达州站 | 13.4 | 16.3 | 18.0 | 358.4 | 5.7 | 0.67 |
2010-07-17 | 255.8 | 达州站 | 12.6 | 19.6 | 22.9 | 355.8 | 5.7 | 0.68 |
2011-09-17 | 250.4 | 汉中站 | 9.6 | 12.6 | 14.0 | 343.0 | 4.7 | 1.47 |
2014-09-13 | 269.9 | 重庆站 | 11.8 | 17.3 | 19.1 | 353.3 | 5.3 | 0.19 |
2021-08-07 | 334.0 | 重庆站 | 14.4 | 18.5 | 21.0 | 363.9 | 4.8 | 0.64 |
2021-08-22 | 251.2 | 达州站 | 12.5 | 17.9 | 19.0 | 357.1 | 5.7 | 0.50 |
Fig.7 The radar reflectivity factor on the elevation of 1.5° of Nanchong Station (the color shaded, Unit: dBZ) superimposed with 700 hPa (a, b, d) and 800 hPa (c, e) wind fields (wind vectors, Unit: m·s-1), 750 hPa (a, b, c) and 700 hPa (d, e) divergence fields (red isolines, Unit: 10-5 s-1) at 20:20 (a), 23:29 (b) on 7 and 01:06 (c), 02:00 (d), 06:28 (e) on 8 August 2021 (The brown line is the shear line, and the black circle indicates the location of the convection system D)
Fig.8 The longitude-height section of θse (the color shaded, Unit: K), relative humidity (red isolines, Unit: %) and synthesis of zonal wind-vertical velocity (arrows, Unit: m·s-1) along 31°N (a), 650 hPa positive vorticity advection (the color shaded, Unit: 10-8 s-2) and wind field (wind vectors, Unit: m·s-1) (b) at 20:00 on 7 August 2021 (The vertical velocity is magnified by 50 times in the zonal wind-vertical velocity synthesis)
Fig.9 The surface air temperature (color dots, Unit: ℃), surface wind field (wind vectors, Unit: m·s-1) and 1 000 hPa divergence field (red isolines, Unit: 10-5 s-1) at 20:00 (a), 23:00 (b) on 7 and 01:00 on 8 (c) August 2021 in the northeastern region of the Sichuan Basin (The blue circle is the location of the ground convergence area, brown dotted arrows indicates the direction of the surface wind field)
Fig.10 The latitude-height sections of θse (the color shaded, Unit: K), relative humidity (red isolines, Unit: %) and synthesis of meridional wind-vertical velocity (arrows, Unit: m·s-1) along 105°E at 02:00 (a) and 06:00 (b) on 8 August 2021 (The vertical velocity is magnified by 50 times in the meridional wind-vertical velocity synthesis, the same as below)
Fig.11 The latitude-height sections of θse (the color shaded, Unit: K), relative humidity (red isolines, Unit: %), synthesis of meridional wind-vertical velocity (arrows, Unit: m·s-1) along 106.75°E (a) and 107.00°E (b, c) at 23:00 (a) on 7 and 02:00 (b), 06:00 (c) on 8 August 2021
Fig.12 The longitude-height sections of θse (the color shaded, Unit: K), relative humidity (red isolines, Unit: %), synthesis of zonal wind-vertical velocity (arrows, Unit: m·s-1) along 31°N (a, b, c) and 32°N (d, e, f) at 23:00 (a, d) on 7 and 02:00 (b, e), 06:00 (c, f) on 8 August 2021 (The vertical velocity is magnified by 50 times in the zonal wind-vertical velocity synthesis)
[1] |
冯晋勤, 卢芸芸, 赖巧珍, 等, 2022. 福建西部山区一次中尺度对流系统触发机制分析[J]. 干旱气象, 40(1):62-72.
DOI |
[2] | 李明华, 陈芳丽, 姜帅, 等, 2019. “18·8”粤东暴雨中心极端强降水“列车效应”分析[J]. 暴雨灾害, 38(4):329-337. |
[3] | 林宗桂, 李耀先, 林开平, 等, 2009. 一个长生命期中尺度对流系统维持机制的研究[J]. 气象学报, 67(4):640-651. |
[4] | 马禹, 王旭, 陶祖钰, 1997. 中国及其邻近地区中尺度对流系统的普查和时空分布特征[J]. 自然科学进展, 7(6):701-706. |
[5] |
马志敏, 王将, 连钰, 等, 2023. 云南一次强对流暴雨天气学成因分析[J]. 干旱气象, 41(4): 629-638.
DOI |
[6] | 努尔比亚·吐尼牙孜, 李凤晶, 阿依努尔·买买提吐逊, 等, 2024. 中亚低涡背景下南疆西部山区一次极端暴雨成因分析[J]. 沙漠与绿洲气象, 18(6):38-46. |
[7] | 秦大河, 张建云, 闪淳昌, 等, 2015. 中国极端天气气候事件和灾害风险管理与适应国家评估报告[M]. 北京: 科学出版社:1-15. |
[8] | 全国气象防灾减灾标准化技术委员会, 2012. 降水量等级:GB/T 28592—2012[S]. 北京: 中国标准出版社. |
[9] |
沙宏娥, 傅朝, 刘维成, 等, 2022. 西北东部半干旱区一次极端特大暴雨的触发和维持机制[J]. 干旱气象, 40(6):933-944.
DOI |
[10] |
石延召, 刘维成, 傅朝, 等, 2024. 甘肃陇南两次暴雨天气过程对比分析[J]. 干旱气象, 42(1):107-116.
DOI |
[11] | 孙军, 谌芸, 杨舒楠, 等, 2012. 北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J]. 气象, 38(10):1267-1 277. |
[12] | 谌芸, 孙军, 徐珺, 等, 2012. 北京721特大暴雨极端性分析及思考(一)观测分析及思考[J]. 气象, 38(10):1255-1 266. |
[13] | 韦惠红, 黄小彦, 刘文婷, 等, 2022. 复杂山地下引发特大暴雨的准静止MCS观测分析[J]. 暴雨灾害, 41(3):241-253. |
[14] |
魏娟娟, 万瑜, 潘宁, 等, 2024. 伊犁河谷春季极端暴雨水汽特征与不稳定机制分析[J]. 干旱气象, 42(3):395-404.
DOI |
[15] | 徐珺, 毕宝贵, 谌芸, 等, 2018. “5·7”广州局地突发特大暴雨中尺度特征及成因分析[J]. 气象学报, 76(4):511-524. |
[16] | 杨群, 向楠, 冉光镜, 等, 2024. 梵净山突发特大暴雨地形作用及动热力特征分析[J]. 沙漠与绿洲气象, 18(6):55-63. |
[17] | 杨秀庄, 李刚, 吴古会, 等, 2024. 西北气流下一次暖区强对流天气特征及触发机制分析[J]. 高原山地气象研究, 44(1):31-40. |
[18] | 俞小鼎, 2013. 短时强降水临近预报的思路与方法[J]. 暴雨灾害, 32(3):202-209. |
[19] | 俞小鼎, 王秀明, 李万莉, 等, 2020. 雷暴与强对流临近预报[M]. 北京: 气象出版社:348-372. |
[20] | 张家国, 周金莲, 谌伟, 等, 2015. 大别山西侧极端降水中尺度对流系统结构与传播特征[J]. 气象学报, 73(2):291-304. |
[21] | 张江涛, 何丽华, 李江波, 等, 2023. 河北“23·7”极端暴雨过程特征及成因初探[J]. 大气科学学报, 46(6):884-903. |
[22] | 赵宇, 裴昌春, 杨成芳, 2017. 梅雨锋暴雨中尺度对流系统触发和组织化的观测分析[J]. 气象学报, 75(5):700-716. |
[23] | 周林, 王君军, 罗乃兴, 等, 2023. 黔中地区一次暖区暴雨的中尺度特征分析[J]. 沙漠与绿洲气象, 17(2):146-153. |
[24] | 周威, 魏庆, 杨康权, 等, 2024. 四川两次极端暴雨强降水特征及与雷达回波和闪电关系分析[J]. 高原山地气象研究, 44(1):104-110. |
[25] | 朱莉, 马志敏, 李华宏, 等, 2023. 云南一次城市极端强降水事件成因分析[J]. 高原山地气象研究, 43(1):54-64. |
[26] | CORFIDI, STEPHEN F, 2003. Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs[J]. Weather and Forecasting, 18(6):997-1017. |
[27] | LUO Y L, CHEN Y R, 2015. Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China:An ensemble approach[J]. Journal of Geophysical Research: Atmospheres, 120(20):10593-10 618. |
[28] | ORLANSKI I, 1975. A rational subdivision of scales for atmospheric processes[J]. Bulletin of the American Meteorological Society, 56: 527-530. |
[29] | SCHUMACHER R S, JOHNSON R H, 2005. Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J]. Monthly Weather Review, 133(4): 961-976. |
[30] | WANG C C, CHIOU B K, CHEN G T, et al, 2016. A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11-12 June 2012[J]. Atmospheric Chemistry and Physics, 16(18): 12 359-12 382. |
[1] | SHEN Xiaoling, CEN Lulin, ZHANG Chaoqin, ZHANG Weiwei. Analysis of multi types radar products characteristics of a gust front and the extreme wind after the gust front [J]. Journal of Arid Meteorology, 2025, 43(1): 114-125. |
[2] | WEI Juanjuan, WAN Yu, PAN Ning, XIAO Junʼan. Analysis of water vapor characteristics and unstable mechanism of extreme rainstorm in spring in Yili River Valley [J]. Journal of Arid Meteorology, 2024, 42(3): 395-404. |
[3] | ZHOU Jinhong, WANG Xiuming, TIAN Xiaoting, ZHANG Zexiu, LI Shuwen, CAI Xiaofang. Study on circulation characteristics and water vapor anomaly of extreme rainstorm events in Shanxi Province [J]. Journal of Arid Meteorology, 2024, 42(3): 426-436. |
[4] | FU Zhao, LIU Weicheng, SONG Xingyu, XU Lili, SHA Honge, MA Li, CUI Yu. Local enhanced convective environment characteristics of an extreme rainstorm event in arid region of Northwest China [J]. Journal of Arid Meteorology, 2022, 40(6): 909-921. |
[5] | SHEN Xiaoling, PAN Lingjie, ZUO Jun, SANG Minghui, ZHANG Lina. Comparative analysis on two similar falling area rainstorms during Meiyu period in western Zhejiang Province [J]. Journal of Arid Meteorology, 2022, 40(2): 244-255. |
[6] | FENG Jinqin, LU Yunyun, LAI Qiaozhen, CAI Jing. Analysis of trigger mechanism of a mesoscale covective system in western mountainous area of Fujian [J]. Journal of Arid Meteorology, 2022, 40(1): 62-72. |
[7] | LIU Xinwei,WANG Chenghai,GUO Runxia,YANG Xiaojun,DI Xiaohong. Climate and Circulation Characteristics of Extreme Rainstorm Processes in Gansu from 1981 to 2018 [J]. Journal of Arid Meteorology, 2021, 39(5): 750-758. |
[8] | HE Zhe, WANG Jun, LI Han, LU Tan, CUI Liman, . Multi-scale Characteristics of a Convective Rainstorm on the Edge of Subtropical High in Henan Province [J]. Journal of Arid Meteorology, 2020, 38(03): 423-432. |
[9] | YANG Lei1,JIANG Dakai1,WANG Ying1,CAI Kuizhi1,SUN Li2,YANG Xue1,CAO Shiteng1. Analysis on Multi-scale Characteristics of a Torrential Rainstorm in Liaoning Province on 16 August 2013 [J]. Journal of Arid Meteorology, 2017, 35(2): 267-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com