Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (5): 784-793.DOI: 10.11755/j.issn.1006-7639-2024-05-0784
• Articles • Previous Articles Next Articles
ZHU Yuqing1(), XUE Xiaoping2(
)
Received:
2023-10-07
Revised:
2024-05-28
Online:
2024-10-31
Published:
2024-11-17
通讯作者:
薛晓萍(1964—),女,博士,正高级工程师,主要从事农业气象研究。E-mail: 作者简介:
朱雨晴(1993—),女,硕士,工程师,主要从事设施农业气象研究。E-mail: 2806217750@qq.com。
基金资助:
CLC Number:
ZHU Yuqing, XUE Xiaoping. Simulation analysis of numbers of flowering and fruit setting and dry matter accumulation of greenhouse tomato based on Photo-thermal Product[J]. Journal of Arid Meteorology, 2024, 42(5): 784-793.
朱雨晴, 薛晓萍. 基于辐热积的设施番茄开花坐果数及其干物质积累过程模拟分析[J]. 干旱气象, 2024, 42(5): 784-793.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2024-05-0784
试验 | 地点 | 经纬度 | 试验品种 | 定植日期 | 试验日期 | 结束日期 | 垄宽/cm | 行间距/cm | 株间距/cm |
---|---|---|---|---|---|---|---|---|---|
试验1 | 临沂市沂南县设施农业气象试验站 | 118.47°E,35.56°N | 粉冠 | 2017年10月1日 | 2017年11月10日 | 2018年1月1日 | 95 | 40 | 30 |
试验2 | 济南市长清区济西农业设施蔬菜大棚 | 116.76°E,35.56°N | 粉冠 | 2018年10年10日 | 2018年11月20日 | 2019年1月10日 | 60 | 40 | 30 |
试验3 | 济宁市兖州瑞鹏农业设施蔬菜大棚 | 116.75°E,35.56°N | 普罗旺斯 | 2021年10月7日 | 2021年11月17日 | 2022年1月3日 | 50 | 40 | 20 |
Tab.1 Test environment
试验 | 地点 | 经纬度 | 试验品种 | 定植日期 | 试验日期 | 结束日期 | 垄宽/cm | 行间距/cm | 株间距/cm |
---|---|---|---|---|---|---|---|---|---|
试验1 | 临沂市沂南县设施农业气象试验站 | 118.47°E,35.56°N | 粉冠 | 2017年10月1日 | 2017年11月10日 | 2018年1月1日 | 95 | 40 | 30 |
试验2 | 济南市长清区济西农业设施蔬菜大棚 | 116.76°E,35.56°N | 粉冠 | 2018年10年10日 | 2018年11月20日 | 2019年1月10日 | 60 | 40 | 30 |
试验3 | 济宁市兖州瑞鹏农业设施蔬菜大棚 | 116.75°E,35.56°N | 普罗旺斯 | 2021年10月7日 | 2021年11月17日 | 2022年1月3日 | 50 | 40 | 20 |
不同生育期 | 下限温度Tf | 最适温度To | 上限温度Tm |
---|---|---|---|
苗期 | 10 | 25 | 30 |
花期 | 15 | 25 | 30 |
结果期 | 15 | 25 | 35 |
采收期 | 15 | 25 | 35 |
Tab.2
不同生育期 | 下限温度Tf | 最适温度To | 上限温度Tm |
---|---|---|---|
苗期 | 10 | 25 | 30 |
花期 | 15 | 25 | 30 |
结果期 | 15 | 25 | 35 |
采收期 | 15 | 25 | 35 |
生育指标 | 生长模型与特征值 | ||||||
---|---|---|---|---|---|---|---|
生长模型 | R2 | p1/(mol·m-2) | p2/(mol·m-2) | p3/(mol·m-2) | Vmax | ||
编号 | 公式 | ||||||
开花 | (6) | y=5.238/[1+3.979exp (-0.058x)] | 0.994 | 1.10 | 46.52 | 23.81 | 0.08朵·d-1 |
坐果 | (7) | y=5.028/[1+2.995exp (-0.054x)] | 0.994 | 0 | 44.70 | 20.31 | 0.07个·d-1 |
果实横茎 | (8) | y=87.782/[1+1.888exp (-0.016x)] | 0.996 | 0 | 122.03 | 39.72 | 0.35 mm·d-1 |
果实纵茎 | (9) | y=60.573/[1+1.477exp (-0.016x)] | 0.995 | 0 | 106.69 | 24.38 | 0.24 mm·d-1 |
果实分配比 | (10) | y=0.126/[1+2.436exp (-0.034x)] | 0.992 | 0 | 64.92 | 26.19 | 0 |
花果干物质量 | (11) | y=30.74/(1+3.066exp (-0.021x)) | 0.998 | 0 | 116.07 | 53.35 | 0.16 g·d-1 |
总干物质量 | (12) | y=366.158/(1+1.982exp (-0.011x)) | 0.998 | 0 | 181.92 | 62.19 | 1.01 g·d-1 |
Tab.3 Growth models and eigenvalues of tomato growth indicators
生育指标 | 生长模型与特征值 | ||||||
---|---|---|---|---|---|---|---|
生长模型 | R2 | p1/(mol·m-2) | p2/(mol·m-2) | p3/(mol·m-2) | Vmax | ||
编号 | 公式 | ||||||
开花 | (6) | y=5.238/[1+3.979exp (-0.058x)] | 0.994 | 1.10 | 46.52 | 23.81 | 0.08朵·d-1 |
坐果 | (7) | y=5.028/[1+2.995exp (-0.054x)] | 0.994 | 0 | 44.70 | 20.31 | 0.07个·d-1 |
果实横茎 | (8) | y=87.782/[1+1.888exp (-0.016x)] | 0.996 | 0 | 122.03 | 39.72 | 0.35 mm·d-1 |
果实纵茎 | (9) | y=60.573/[1+1.477exp (-0.016x)] | 0.995 | 0 | 106.69 | 24.38 | 0.24 mm·d-1 |
果实分配比 | (10) | y=0.126/[1+2.436exp (-0.034x)] | 0.992 | 0 | 64.92 | 26.19 | 0 |
花果干物质量 | (11) | y=30.74/(1+3.066exp (-0.021x)) | 0.998 | 0 | 116.07 | 53.35 | 0.16 g·d-1 |
总干物质量 | (12) | y=366.158/(1+1.982exp (-0.011x)) | 0.998 | 0 | 181.92 | 62.19 | 1.01 g·d-1 |
验证 | R2 | RMSE | nRMSE | |
---|---|---|---|---|
开花/朵 | 1 | 0.970 | 0.728 | 0.196 |
2 | 0.966 | 0.780 | 0.235 | |
3 | 0.839 | 0.753 | 0.246 | |
坐果/个 | 1 | 0.965 | 0.564 | 0.147 |
2 | 0.997 | 0.208 | 0.061 | |
3 | 0.974 | 0.588 | 0.145 | |
横茎/mm | 1 | 0.987 | 4.246 | 0.080 |
2 | 0.993 | 2.690 | 0.053 | |
3 | 0.992 | 7.436 | 0.133 | |
纵茎/mm | 1 | 0.999 | 2.932 | 0.078 |
2 | 0.989 | 0.991 | 0.027 | |
3 | 0.988 | 6.182 | 0.147 | |
果实分配比 | 2 | 0.905 | 0.015 | 0.164 |
3 | 0.925 | 0.026 | 0.227 | |
总干物质量/g | 2 | 0.996 | 6.435 | 0.035 |
3 | 0.993 | 14.229 | 0.078 | |
果实干物质量/g | 2 | 0.993 | 0.878 | 0.046 |
3 | 0.989 | 4.893 | 0.213 |
Tab.4 Results of the model testing
验证 | R2 | RMSE | nRMSE | |
---|---|---|---|---|
开花/朵 | 1 | 0.970 | 0.728 | 0.196 |
2 | 0.966 | 0.780 | 0.235 | |
3 | 0.839 | 0.753 | 0.246 | |
坐果/个 | 1 | 0.965 | 0.564 | 0.147 |
2 | 0.997 | 0.208 | 0.061 | |
3 | 0.974 | 0.588 | 0.145 | |
横茎/mm | 1 | 0.987 | 4.246 | 0.080 |
2 | 0.993 | 2.690 | 0.053 | |
3 | 0.992 | 7.436 | 0.133 | |
纵茎/mm | 1 | 0.999 | 2.932 | 0.078 |
2 | 0.989 | 0.991 | 0.027 | |
3 | 0.988 | 6.182 | 0.147 | |
果实分配比 | 2 | 0.905 | 0.015 | 0.164 |
3 | 0.925 | 0.026 | 0.227 | |
总干物质量/g | 2 | 0.996 | 6.435 | 0.035 |
3 | 0.993 | 14.229 | 0.078 | |
果实干物质量/g | 2 | 0.993 | 0.878 | 0.046 |
3 | 0.989 | 4.893 | 0.213 |
[1] | 摆虹霞, 2021. 基于不同水分条件下的日光温室黄瓜生长模型研究[D]. 银川: 宁夏大学. |
[2] | 程陈, 董朝阳, 黎贞发, 等, 2021. 日光温室芹菜外观形态及干物质积累分配模拟模型[J]. 农业工程学报, 37(10):142-151. |
[3] |
乐章燕, 石茗化, 李德, 等, 2022. 河南省设施农业冬季低温灾害风险评估[J]. 干旱气象, 40(4):667-676.
DOI |
[4] | 李翠云, 朱俊科, 贾鹏, 等, 2022. 作物模型在我国玉米生产中的应用与研究[J]. 农业与技术, 42(19):65-68. |
[5] |
李永秀, 罗卫红, 倪纪恒, 等, 2006. 基于辐射和温度热效应的温室水果黄瓜叶面积模型[J]. 植物生态学报, 30(5):861-867.
DOI |
[6] | 刘福昊, 郭申伯, 王笛, 等, 2022. 设施番茄外观形态及物质累积分配模型构建与验证[J]. 农业工程学报, 38(21):188-196. |
[7] | 蒙继华, 王亚楠, 林圳鑫, 等, 2024. 作物生长模型研究现状与展望[J]. 农业机械学报, 55(2):1-15. |
[8] | 明村豪, 蒋芳玲, 王广龙, 等, 2012. 黄瓜壮苗指标与辐热积关系的模拟模型[J]. 农业工程学报, 28(9):109-113. |
[9] | 倪纪恒, 陈学好, 陈春宏, 等, 2009. 用辐热积法模拟温室黄瓜果实生长[J]. 农业工程学报, 25(5):192-196. |
[10] | 倪纪恒, 罗卫红, 李永秀, 等, 2006. 温室番茄干物质分配与产量的模拟分析[J]. 应用生态学报, 17(5):811-816. |
[11] | 石小虎, 蔡焕杰, 赵丽丽, 等, 2016. 不同水分处理下基于辐热积的温室番茄干物质生产及分配模型[J]. 农业工程学报, 32(3):69-77. |
[12] | 王丹丹, 吕振宁, 李坚, 等, 2018. 基于辐热积的日光温室不同茬次袋培番茄干物质模型比较[J]. 西北农业学报, 27(2):238-243. |
[13] | 徐超, 王明田, 杨再强, 等, 2020. 苗期高温对草莓生育期的影响及其模拟[J]. 中国农业气象, 41(10):644-654. |
[14] | 薛晓萍, 2007. 棉花临界氮浓度稀释模型确定及其应用研究[D]. 南京: 南京农业大学. |
[15] | 郁继华, 舒英杰, 吕军芬, 等, 2004. 低温弱光对茄子幼苗光合特性的影响[J]. 西北植物学报, 24(5): 831-836. |
[16] | 袁丁, 武占会, 季延海, 等, 2020. 限根栽培条件下空气果穗部加温对深冬设施番茄产量和品质的影响[J]. 北方园艺(11):7-12. |
[17] | 张继波, 李楠, 邱粲, 等, 2022a. 寡照胁迫对温室番茄开花坐果特性的影响[J]. 气象与环境学报, 38(4):85-92. |
[18] | 张继波, 李楠, 邱粲, 等, 2022b. 寡照胁迫对温室番茄品质影响的模拟研究[J]. 气象与环境科学, 45(3):62-68. |
[19] | 张明达, 李蒙, 胡雪琼, 等, 2013. 基于辐热积法模拟烤烟叶面积与烟叶干物质产量[J]. 生态学报, 33(22): 7 108-7 115. |
[20] | 朱丽云, 2018. 花期低温寡照对设施番茄产量及果实品质的影响[D]. 南京: 南京信息工程大学. |
[21] | 朱雨晴, 薛晓萍, 2019. 遮阴及复光对花果期番茄叶片光合特性的影响[J]. 中国农业气象, 40(2):126-134. |
[22] | 朱雨晴, 薛晓萍, 2020a. 不同遮阴日数对花果期番茄开花坐果特性的影响[J]. 干旱气象, 38(5):820-827. |
[23] | 朱雨晴, 薛晓萍, 2020b. 花果期遮阴对番茄果实生长及品质的影响[J]. 干旱气象, 38(6):994-1 000. |
[24] | 邹雨伽, 高冠, 杨再强, 等, 2016. 低温寡照对番茄花期植株生长及干物质分配的影响[J]. 江苏农业科学, 44(12):178-184. |
[25] | BAKER J T, LESKOVAR D I, REDDY V R, et al, 2001. A simple phenological model of muskmelon development[J]. Annals of Botany, 87(5): 615-621. |
[26] | CALOIN M, YU O, 1982. An extension of the logistic model of plant growth[J]. Annals of Botany, 49(5): 599-607. |
[27] | CAO W, MOSS D N, 1997. Modelling phasic development in wheat: a conceptual integration of physiological components[J]. The Journal of Agricultural Science, 129(2): 163-172. |
[28] | DE KONING A N M, 1996. Quantifying the responses to temperature of different plant processes involved in growth and development of glasshouse tomato[J]. Acta Horticulturae (406): 99-104. |
[29] | FANG S L, KUO Y H, KANG L, et al, 2022. Using sigmoid growth models to simulate greenhouse tomato growth and development[J]. Horticulturae, 8(11): 1021. DOI: 10.3390/horticulturae8111021. |
[30] | HE C, ZHANG Z, 2006. Modeling the relationship between tomato fruit growth and the effective accumulated temperature in solar greenhouse[J]. Acta Horticulturae, 718: 581-588. DOI: 10.17660/ActaHortic.2006.718.68. |
[31] | HEUVELINK E, 1995. Growth, development and yield of a tomato crop: periodic destructive measurements in a greenhouse[J]. Scientia Horticulturae, 61(1/2): 77-99. |
[32] | HEUVELINK E, 1996. Tomato growth and yield: Quantitative analysis and synthesis[D]. The Netherlands: Wageningen Agriculture University. |
[33] | HEUVELINK E, 1999. Evaluation of a dynamic simulation model for tomato crop growth and development[J]. Annals of Botany, 83(4): 413-422. |
[34] | JONES J W, DAYAN E, ALLEN L H, et al, 1991. A dynamic tomato growth and yield model (tomgro)[J]. Transactions of the ASAE, 34(2): 663-672. |
[35] | KARLSSON M G, HEINS R D, GERBERICK J O, et al, 1991. Temperature driven leaf unfolding rate in Hibiscus rosa-sinensis[J]. Scientia Horticulturae, 45(3/4): 323-331. |
[36] | MARCELIS L F M, 1993a. Simulation of biomass allocation in greenhouse crops-a review[J]. Acta Horticulturae(328): 49-68. |
[37] | MARCELIS L F M, 1993b. Fruit growth and biomass allocation to the fruits in cucumber. 1. Effect of fruit load and temperature[J]. Scientia Horticulturae, 54(2): 107-121. |
[38] |
MARCELIS L F M, 1994. A simulation model for dry matter partitioning in cucumber[J]. Annals of Botany, 74(1): 43-52.
DOI PMID |
[39] | MENG Z J, LU T, ZHANG G X, et al, 2017. Photosystem inhibition and protection in tomato leaves under low light[J]. Scientia Horticulturae, 217: 145-155. |
[40] | VERSTRAETEN W W, VEROUSTRAETA F, FEYEN J, 2006. On temperature and water limitation of net ecosystem productivity: Implementation in the C-Fix model[J]. Ecological Modelling, 199(1): 4-22. |
[41] | WURR D C E, FELLOWS J R, SUCKLING R F, 1988. Crop continuity and prediction of maturity in the crisp lettuce variety Saladin[J]. The Journal of Agricultural Science, 111(3): 481-486. |
[1] | MU Jia, WU Di, LIU Yang, WANG Dongni, REN Jingquan. Analysis of influence of drought risk on maize yield in Jilin Province [J]. Journal of Arid Meteorology, 2024, 42(4): 498-506. |
[2] | LIN Hongjie, WEN Xiaohang, HUANG Xiaolu, LI Ruiqing. Numerical simulation study of Typhoon “Ambi” degeneration mechanism and its impact on heavy rainstorm in Inner Mongolia [J]. Journal of Arid Meteorology, 2024, 42(4): 588-597. |
[3] | JIANG Peng, QIN Meiou, CAI Fu, WEN Rihong, MENG Ying, YANG Feiyun, SUN Pei, FENG Ailin, FANG Yuan. Impacts of drought-rewetting on spring maize's physiological parameters and yield in the northeast China [J]. Journal of Arid Meteorology, 2023, 41(2): 207-214. |
[4] | ZHANG Jibo, XUE Xiaoping, ZHANG Xingang, QIU Can, TAN Fangying, LI Nan. Effects of drought stress on mineral element accumulation, yield and grain quality of winter wheat during water critical period [J]. Journal of Arid Meteorology, 2023, 41(2): 223-232. |
[5] | LEI Jun, CAI Dihua, QI Yue, ZHAO Funian, ZHANG Kai, YAO Yubi, ZHANG Xingang, QIU Xihong. Effects of water stress on potato yield formation in semi-arid region [J]. Journal of Arid Meteorology, 2023, 41(2): 233-240. |
[6] | SUN Mingyan, ZHANG Shuwen. Cases study of numerical simulation influences of turbulent vertical mixing intensity on local thermal convection in boundary layer [J]. Journal of Arid Meteorology, 2023, 41(2): 290-300. |
[7] | SHI Yueqin, ZHAO Junjie, SUN Jing, SUN Yuwen. Study on cloud structure and rainfall enhancement condition of a low-trough cold-front cloud over North China [J]. Journal of Arid Meteorology, 2022, 40(6): 1003-1013. |
[8] | DENG Guowei, SUN Jun, LAI Jiang, ZHANG Ling. Grey correlation analysis of drought and yield at different growth stages of rice in Sichuan Province [J]. Journal of Arid Meteorology, 2022, 40(5): 814-822. |
[9] | YIN Qingqing, REN Lu, TIAN Wenshou, WANG Tao, YANG Jingyi, ZHANG Jiankai. Satellite observation and numerical simulation of gravity wave excited by a convection over North China [J]. Journal of Arid Meteorology, 2022, 40(3): 444-455. |
[10] | MA Minjin, CHEN Yue, KANG Guoqiang, ZHAO Zhenzhu, HUANG Wanlong, TAN Changrong, DING Fan. Deviation analysis of reanalysis data in boundary layer in summer over Tibetan Plateau and its simulation correction [J]. Journal of Arid Meteorology, 2022, 40(1): 95-107. |
[11] | ZHANG Jibo,LI Nan,QIU Can,XUE Xiaoping. Effect of Continuous Drought Stress During Critical Period of Water on Photosynthetic Physiology and Yield Formation of Summer Maize [J]. Journal of Arid Meteorology, 2021, 39(5): 734-741. |
[12] | YU Linghua,XIE Wusan,XIONG Shiwei,ZHANG Xintong,XING Cheng,HU Shanshan. Characteristics of Drought and Flood Based on SPEI and Its Impact on Wheat Yield in Chuzhou of Anhui Province [J]. Journal of Arid Meteorology, 2021, 39(5): 742-749. |
[13] | YANG Litao,WANG Sheng,JIANG Xiangping. Spatio-temporal Simulation and Analysis of Potato Climatic Production Potential During the Growing Period in Inner Mongolia [J]. Journal of Arid Meteorology, 2021, 39(5): 816-823. |
[14] | ZHAO Zhinan, WANG Lirong, WANG Congmei, HAN Xiaoqing. Risk Distribution Characteristics of Rainstorm and Flood Disaster Based on Flood Area Model in the Xiaoma River Basin of Xingtai [J]. Journal of Arid Meteorology, 2021, 39(3): 486-493. |
[15] |
LI Shuyan, WANG Yanpo, XING Ranran, WANG Dingjie, REN Liwei, LIU Tianxue.
Comprehensive Evaluation of High Yield and High Efficiency of Summer Maize Varieties in Southern Huanghuai Plain#br#
#br#
[J]. Journal of Arid Meteorology, 2021, 39(1): 130-137.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com