Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (3): 325-337.DOI: 10.11755/j.issn.1006-7639(2024)-03-0325
• Review • Previous Articles Next Articles
LI Yuanyuan1(), ZHAO Xia2(
), YUE Liang2, QIU Yang2
Received:
2024-02-21
Revised:
2024-03-26
Online:
2024-06-30
Published:
2024-07-11
通讯作者:
赵霞(1986—),女,陕西眉县人,助理研究员,主要从事旱区植物根际微生物研究。E-mail:作者简介:
李源源(2003—),女,甘肃兰州人,本科在读,就读于生物科学专业。E-mail:1442919679@qq.com。
基金资助:
CLC Number:
LI Yuanyuan, ZHAO Xia, YUE Liang, QIU Yang. Research progress and prospect on the interaction between plant root exudates and rhizosphere microorganisms under drought stress[J]. Journal of Arid Meteorology, 2024, 42(3): 325-337.
李源源, 赵霞, 岳靓, 邱阳. 干旱胁迫下植物根系分泌物与根际微生物相互作用的研究进展与展望[J]. 干旱气象, 2024, 42(3): 325-337.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2024)-03-0325
种类 | 分泌物质 | 植物来源 | 分泌物变化情况 | 文献 |
---|---|---|---|---|
糖类 | 蔗糖、肌醇、葡萄糖、果糖、松醇、可溶性糖 | 大豆、小豆、向日葵、黑果枸杞、冬青栎、木荷、米槠、苦槠、石栎 | 分泌速率降低、浓度升高、含量增加 | (Canarini et al., |
氨基酸类 | 甲硫氨酸、异亮氨酸、苯丙氨酸、谷氨酰胺、天冬氨酸、脯氨酸、色氨酸、甘氨酸、亮氨酸、丙氨酸、苏氨酸、可溶性蛋白质 | 大豆、小豆、向日葵、玉米、黑果枸杞、冬青栎、木荷、米槠、苦槠、石栎 | 分泌速率降低、浓度升高、含量增加 | (Canarini et al., |
有机酸类 | 延胡索酸、异柠檬酸、琥珀酸、酒石酸、苹果酸、马来酸、柠檬酸、乌头酸、香草酸、草酸、油酸、乳酸、乙酸、酚酸 | 大豆、向日葵、玉米、珍珠粟、花生、甘蔗、油菜、卷心菜、冬青栎、木荷、米槠、苦槠、石栎 | 分泌速率降低、分泌速率先降低后升高、浓度升高、浓度降低、含量增加 | (Song et al., |
黄酮类 | 毛蕊异黄酮、毛蕊异黄酮葡萄糖苷、芒柄花黄素、芦丁、(+)-儿茶素、柚皮素、刺槐素、异荭草素、类黄酮 | 珍珠粟、花生、黄芪、 大黄、冬青栎 | 含量先升高再降低、含量增加、浓度增加 | (Gargallo-Garriga et al., |
酚类 | 棉酚、没食子酸、木质素 | 大豆、珍珠粟、蓖麻、 大黄 | 浓度升高、含量先升高再降低、含量先降低后升高 | (Canarini et al., |
酶类 | 超氧化物歧化酶、过氧化物酶、过氧化氢酶、蔗糖酶、脲酶 | 小豆、小麦、黑果枸杞 | 活性升高、活性先升高再降低、含量先升高再降低 | (姜林等, |
醛类 | 丙二醛 | 黑果枸杞 | 含量升高 | (张金菊等, |
萜类 | 龙胆苦苷 | 大黄 | 含量先降低再升高 | (谢丰璞等, |
生物碱类 | 腺嘌呤、尿苷 | 大黄 | 含量先升高再降低 | (谢丰璞等, |
苯丙素类 | 二氢山芹醇、芥子酸 | 大黄 | 含量先升高后降低再升高 | (谢丰璞等, |
皂苷类 | 黄芪皂苷Ⅰ、黄芪皂苷Ⅱ、黄芪皂苷Ⅳ | 黄芪 | 含量升高 | (李佩蓉, |
Tab.1 Changes in root exudates of different plants under drought conditions
种类 | 分泌物质 | 植物来源 | 分泌物变化情况 | 文献 |
---|---|---|---|---|
糖类 | 蔗糖、肌醇、葡萄糖、果糖、松醇、可溶性糖 | 大豆、小豆、向日葵、黑果枸杞、冬青栎、木荷、米槠、苦槠、石栎 | 分泌速率降低、浓度升高、含量增加 | (Canarini et al., |
氨基酸类 | 甲硫氨酸、异亮氨酸、苯丙氨酸、谷氨酰胺、天冬氨酸、脯氨酸、色氨酸、甘氨酸、亮氨酸、丙氨酸、苏氨酸、可溶性蛋白质 | 大豆、小豆、向日葵、玉米、黑果枸杞、冬青栎、木荷、米槠、苦槠、石栎 | 分泌速率降低、浓度升高、含量增加 | (Canarini et al., |
有机酸类 | 延胡索酸、异柠檬酸、琥珀酸、酒石酸、苹果酸、马来酸、柠檬酸、乌头酸、香草酸、草酸、油酸、乳酸、乙酸、酚酸 | 大豆、向日葵、玉米、珍珠粟、花生、甘蔗、油菜、卷心菜、冬青栎、木荷、米槠、苦槠、石栎 | 分泌速率降低、分泌速率先降低后升高、浓度升高、浓度降低、含量增加 | (Song et al., |
黄酮类 | 毛蕊异黄酮、毛蕊异黄酮葡萄糖苷、芒柄花黄素、芦丁、(+)-儿茶素、柚皮素、刺槐素、异荭草素、类黄酮 | 珍珠粟、花生、黄芪、 大黄、冬青栎 | 含量先升高再降低、含量增加、浓度增加 | (Gargallo-Garriga et al., |
酚类 | 棉酚、没食子酸、木质素 | 大豆、珍珠粟、蓖麻、 大黄 | 浓度升高、含量先升高再降低、含量先降低后升高 | (Canarini et al., |
酶类 | 超氧化物歧化酶、过氧化物酶、过氧化氢酶、蔗糖酶、脲酶 | 小豆、小麦、黑果枸杞 | 活性升高、活性先升高再降低、含量先升高再降低 | (姜林等, |
醛类 | 丙二醛 | 黑果枸杞 | 含量升高 | (张金菊等, |
萜类 | 龙胆苦苷 | 大黄 | 含量先降低再升高 | (谢丰璞等, |
生物碱类 | 腺嘌呤、尿苷 | 大黄 | 含量先升高再降低 | (谢丰璞等, |
苯丙素类 | 二氢山芹醇、芥子酸 | 大黄 | 含量先升高后降低再升高 | (谢丰璞等, |
皂苷类 | 黄芪皂苷Ⅰ、黄芪皂苷Ⅱ、黄芪皂苷Ⅳ | 黄芪 | 含量升高 | (李佩蓉, |
植物 | 微生物 | 机制 | 文献 |
---|---|---|---|
拟南芥 | 多粘类芽孢杆菌(Paenibacillus polymyxa)CR1 | 上调脱水反应基因 | (Liu et al., |
水稻 | 高山芽孢杆菌(Bacillus altitudinis)FD48、甲基营养芽孢杆菌(Bacillus methylotrophicus)RABA6 | 增加光合色素和脯氨酸含量,引发活性氧酶活性 | (Narayanasamy et al., |
蜡状芽孢杆菌(Bacillus cereus)F06 | 调节激素含量,提高光合速率 | (陈苏等, | |
恶臭假单胞菌(Pseudomonas putida) AKMP7 | 降低亚精胺(spermidine) | (Nikhil et al., | |
哈茨木霉(Trichoderma harzianum)1 | 增加光合基因、代谢途径基因、胁迫增强渗透蛋白等的表达 | (Bashyal et al., | |
玉米 | 巨大芽孢杆菌(Bacillus megaterium)、阿氏芽孢杆菌 (Bacillus aryabhattai) | 降低抗氧化酶活性,促进水分吸收 | (李安等, |
变形球囊霉(Glomus versiforme) | 消除活性氧,上调氧化系统,维持氧化还原稳态 | (Begum et al., | |
小麦 | 海洋细菌(Pseudomonas sp.)、粘质沙雷氏菌(Serratia marcescens) | 产生ACC脱氨酶、IAA等,改善生理状态 | (Khan and Singh, |
鹰嘴豆 | 解淀粉芽孢杆菌(Bacillus amyloliquefaciens)NBRISN13 | 改善防御酶和胁迫指标 | (Kumar et al., |
棉花 | 印度梨形孢真菌(Piriformospora indica) | 增强光合作用,改变根系结构 | (潘锐等, |
辣椒 | 解淀粉芽孢杆菌(Bacillus amyloliquefaciens) | 增加辣椒水解酶基因表达 | (Kazerooni et al., |
番茄 | 解淀粉芽孢杆菌(Bacillus amyloliquefaciens)54 | 增加应激响应基因表达,提高抗氧化酶活性 | (Wang et al., |
秋葵 | 荧光假单胞菌(Pseudomonas fluorescens) | 增加相对含水量,积累代谢产物,增强非酶促抗氧化剂活性 | (Pravisya et al., |
Tab.2 Mechanism of plant-growth promoting rhizobacteria in improving drought resistance of plants
植物 | 微生物 | 机制 | 文献 |
---|---|---|---|
拟南芥 | 多粘类芽孢杆菌(Paenibacillus polymyxa)CR1 | 上调脱水反应基因 | (Liu et al., |
水稻 | 高山芽孢杆菌(Bacillus altitudinis)FD48、甲基营养芽孢杆菌(Bacillus methylotrophicus)RABA6 | 增加光合色素和脯氨酸含量,引发活性氧酶活性 | (Narayanasamy et al., |
蜡状芽孢杆菌(Bacillus cereus)F06 | 调节激素含量,提高光合速率 | (陈苏等, | |
恶臭假单胞菌(Pseudomonas putida) AKMP7 | 降低亚精胺(spermidine) | (Nikhil et al., | |
哈茨木霉(Trichoderma harzianum)1 | 增加光合基因、代谢途径基因、胁迫增强渗透蛋白等的表达 | (Bashyal et al., | |
玉米 | 巨大芽孢杆菌(Bacillus megaterium)、阿氏芽孢杆菌 (Bacillus aryabhattai) | 降低抗氧化酶活性,促进水分吸收 | (李安等, |
变形球囊霉(Glomus versiforme) | 消除活性氧,上调氧化系统,维持氧化还原稳态 | (Begum et al., | |
小麦 | 海洋细菌(Pseudomonas sp.)、粘质沙雷氏菌(Serratia marcescens) | 产生ACC脱氨酶、IAA等,改善生理状态 | (Khan and Singh, |
鹰嘴豆 | 解淀粉芽孢杆菌(Bacillus amyloliquefaciens)NBRISN13 | 改善防御酶和胁迫指标 | (Kumar et al., |
棉花 | 印度梨形孢真菌(Piriformospora indica) | 增强光合作用,改变根系结构 | (潘锐等, |
辣椒 | 解淀粉芽孢杆菌(Bacillus amyloliquefaciens) | 增加辣椒水解酶基因表达 | (Kazerooni et al., |
番茄 | 解淀粉芽孢杆菌(Bacillus amyloliquefaciens)54 | 增加应激响应基因表达,提高抗氧化酶活性 | (Wang et al., |
秋葵 | 荧光假单胞菌(Pseudomonas fluorescens) | 增加相对含水量,积累代谢产物,增强非酶促抗氧化剂活性 | (Pravisya et al., |
[1] | 曹亚静, 赵美丞, 郑春燕, 等, 2023. 根际微生物介导的植物响应干旱胁迫机制研究进展[J]. 中国生态农业学报(中英文), 31(8): 1 330-1 342. |
[2] | 陈春玲, 李金曼, 罗杰, 等, 2024. 印度梨形孢对香蕉抗旱性的影响[J]. 应用与环境生物学报, 30(1): 118-125. |
[3] | 陈佳瑞, 2021. 干旱胁迫对丁香土壤微生物群落特征的影响[D]. 杨凌: 西北农林科技大学. |
[4] |
陈苏, 谢建坤, 黄文新, 等, 2018. 根际促生细菌对干旱胁迫下水稻生理特性的影响[J]. 中国水稻科学, 32(5): 485-492.
DOI |
[5] | 陈晓斌, 张炳欣, 2000. 植物根围促生细菌(PGPR)作用机制的研究进展[J]. 微生物学杂志, 20(1): 38-41. |
[6] | 陈禹竹, 唐琦勇, 顾美英, 等, 2019. 盐爪爪根部微生物分布特征及盐浓度对碳源代谢分析的影响[J]. 微生物学通报, 46(11): 2 900-2 908. |
[7] | 单皓, 罗海婧, 张松, 等, 2023. 不同抗旱性小豆根系对干旱-复水的生理生态响应[J]. 干旱地区农业研究, 41(1): 94-100. |
[8] | 高彦婷, 黄珍, 张芮, 等, 2021. 单生育期水分胁迫对温室葡萄根际土壤酶活性及微生物群落的影响[J]. 干旱地区农业研究, 39(3): 59-68. |
[9] | 高艳, 2008. 不同干旱条件下的根系分泌物及其与根际微生物的关系[D]. 重庆: 西南大学. |
[10] | 姜林, 胡骥, 杨振安, 等, 2022. 小麦根际微生物群落结构和多样性对水分胁迫的响应[J]. 灌溉排水学报, 41(10): 441-50. |
[11] | 蒋铮, 2023. 干旱胁迫下常绿阔叶林根系分泌速率及其对土壤碳激发效应的影响[D]. 上海: 华东师范大学. |
[12] | 李安, 舒健虹, 刘晓霞, 等, 2023. 干旱胁迫下枯草芽孢杆菌对玉米苗期叶片的生理生化调节[J]. 西北农业学报, 32(12): 1 964-1 977. |
[13] | 李林瑜, 方紫妍, 艾克拜尔·毛拉, 等, 2020. 自然干旱胁迫对两种小檗幼苗生长和生理生化指标的影响[J]. 北方园艺, (4): 80-86. |
[14] | 李佩蓉, 2023. 根际细菌群落促进黄芪抵抗干旱胁迫机制探究[D]. 杨凌: 西北农林科技大学. |
[15] | 吕柏辰, 孙海, 钱佳奇, 等, 2024. 药用植物根系分泌物与根际微生物相互作用及其在中药材生态种植中的应用[J]. 中国中药杂志, 49(8): 2 128-2 137. |
[16] | 李月明, 杨帆, 韩沛霖, 等, 2022. 植物根系分泌物响应非生物胁迫机理研究进展[J]. 应用与环境生物学报, 28(5): 1 384-1 392. |
[17] | 刘宇, 韩淑梅, 宋希强, 等, 2018. 不同海拔下海南凤仙花可培养根际真菌和细菌群落的季节性变化[J]. 热带生物学报, 9(1): 47-53. |
[18] | 龙吉兰, 蒋铮, 刘定琴,, 2024. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J/OL]. 植物生态学报, 1-11. [2024-06-21]. http://kns.cnki.net/kcms/detail/11.3397.q.20240130.1652.002.html. |
[19] | 毛梦雪, 朱峰, 2021. 根系分泌物介导植物抗逆性研究进展与展望[J]. 中国生态农业学报(中英文), 29(10): 1 649-1 657. |
[20] | 潘锐, 邓晶, 胡爱兵, 等, 2019. 印度梨形孢促进棉花幼苗生长及诱导提高苗期抗旱性研究[J]. 干旱地区农业研究, 37(5): 249-256. |
[21] | 庞志强, 余迪求, 2020. 干旱胁迫下的植物根系-微生物互作体系及其应用[J]. 植物生理学报, 56(2): 109-126. |
[22] | 秦永梅, 杨慧, 李杰, 等, 2019. 干旱对樱桃幼苗根际微生物及生理指标的影响[J]. 西部林业科学, 48(4): 44-49. |
[23] | 王灿, 赵文麟, 张新梅, 等, 2024. 根际细菌群落结构对黄瓜幼苗干旱胁迫的响应[J]. 西南农业学报, 37(1): 92-100. |
[24] | 王静, 康林玉, 刘周斌, 等, 2017. 干旱对植物影响的研究进展[J]. 湖南农业科学, (7): 123-126. |
[25] | 谢丰璞, 王楠, 高静, 等, 2023. 干旱胁迫下药用大黄根部药效成分及根际土壤微生物变化规律及其相互作用机制研究[J]. 中国中药杂志, 48(6): 1 498-1 509. |
[26] | 徐绮雯, 2020. 水钾耦合对油菜苗期生长、根系分泌物与根际微环境的影响[D]. 重庆: 西南大学. |
[27] |
薛亮, 袁淑杰, 王劲松, 2023. 我国不同区域气象干旱成因研究进展与展望[J]. 干旱气象, 41(1): 1-13.
DOI |
[28] | 张红, 2023. PEG胁迫下根际促生菌Tsukamurella tyrosinosolvens P9与花生互作的转录组研究[D]. 贵阳: 贵州大学. |
[29] |
张继波, 李楠, 邱粲, 等, 2021. 水分临界期持续干旱胁迫对夏玉米光合生理与产量形成的影响[J]. 干旱气象, 39(5): 734-741.
DOI |
[30] |
张健, 张明, 侯云鹏, 等, 2019. 干旱胁迫对甘肃中部春小麦生理性状及灌水利用效率的影响[J]. 干旱气象, 37(1): 139-145.
DOI |
[31] | 张江伟, 薛佳欣, 李慧, 等, 2022. 小麦根际微生物群落结构和多样性对水分胁迫的响应[J]. 灌溉排水学报, 41(10): 41-50. |
[32] | 张金菊, 田青, 郭有燕, 等, 2023. 黑果枸杞根系对干旱胁迫响应的生理机制[J]. 甘肃农业大学学报, 58(4): 183-191. |
[33] |
张强, 2022. 科学解读“2022年长江流域重大干旱”[J]. 干旱气象, 40(4): 545-548.
DOI |
[34] | 张强, 陈丽华, 王润元, 等, 2012. 气候变化与西北地区粮食和食品安全[J]. 干旱气象, 30(4): 509-513. |
[35] | 张翔, 韦燕芳, 李思宇, 等, 2021. 从干旱灾害到干旱灾害链:进展与挑战[J]. 干旱气象, 39(6): 873-883. |
[36] |
赵鸿, 蔡迪花, 王鹤龄, 等, 2023. 干旱灾害对粮食安全的影响及其应对技术研究进展与展望[J]. 干旱气象, 41(2): 187-206.
DOI |
[37] | 赵鸿, 李凤民, 熊友才, 等, 2008. 土壤干旱对作物生长过程和产量影响的研究进展[J]. 干旱气象, 26(3): 67-71. |
[38] |
赵鸿, 王润元, 尚艳, 等, 2016. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望[J]. 干旱气象, 34(1): 1-12.
DOI |
[39] | 赵霞, 王若愚, 2016. 细菌胞外多糖生物活性的研究进展[J]. 微生物学免疫学进展, 44(3): 67-71. |
[40] | 郑国光, 2009. 科学应对全球气候变暖提高粮食安全保障能力[J]. 求是, (23): 47-49. |
[41] | 佚名, 2024. 2023年全国自然灾害基本情况[N]. 中国应急管理报, 2024-01-22( 001). |
[42] |
ALI F, SIDDIQUI Z S, ANSARI H H, et al, 2023. Halophilic soil microbial strains improve the moisture stress tolerance in oilseed crop by sustaining Photosystem II functionality[J]. Plant Physiology and Biochemistry, 196: 10-22.
DOI PMID |
[43] | ALLARD-MASSICOTTE R, TESSIER L, LÉCUYER F, et al, 2016. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors[J]. mBio, 7(6): e01664-e01616. DOI:10.1128/mBio.01664-16 |
[44] | AZIZI M, FARD E M, GHABOOLI M, 2021. Piriformospora indica affect drought tolerance by regulation of genes expression and some morphophysiological parameters in tomato (Solanum lycopersicum L.)[J]. Scientia Horticulturae, 287, 110260. DOI:10.1016/J.SCIENTA.2021.110260 |
[45] | BASHYAL B M, PARMAR P, ZAIDI N W, et al, 2021. Molecular programming of drought-challenged Trichoderma harzianum-bioprimed rice (Oryza sativa L.)[J]. Frontiers In Microbiology, 12, 655165. DOI:10.3389/fmicb.2021.655165 |
[46] | BEGUM N, AHANGER M A, SU Y Y, et al, 2019. Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications[J]. Plants (Basel), 8(12), 579. DOI:10.3390/plants8120579 |
[47] | BORNØ M L, MÜLLER-STÖVER D S, LIU F L, 2022. Biochar modifies the content of primary metabolites in the rhizosphere of well-watered and drought-stressed Zea mays L. (maize)[J]. Biology and Fertility of Soils, 58(6): 633-647. |
[48] | CANARINI A, MERCHANT A, DIJKSTRA F A, 2016. Drought effects on Helianthus annuus and Glycine max metabolites: From phloem to root exudates[J]. Rhizosphere, 2: 85-97. |
[49] |
CESARI A, PAULUCCI N, LÓPEZ-GÓMEZ M, et al, 2019. Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth[J]. Plant Physiology and Biochemistry, 142: 519-527.
DOI PMID |
[50] | CHEN Y L, YAO Z M, SUN Y, et al, 2022. Current studies of the effects of drought stress on root exudates and rhizosphere microbiomes of crop plant species[J]. International Journal of Molecular Sciences, 23(4), 2374. DOI:10.3390/ijms23042374. |
[51] | DAI L X, ZHANG G C, YU Z P, et al, 2019. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil[J]. International Journal of Molecular Sciences, 20(9), 2265. DOI:10.3390/ijms20092265. |
[52] |
DE VRIES F T, GRIFFITHS R I, KNIGHT C G, et al, 2020. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 368(6488): 270-274.
DOI PMID |
[53] | European Environment Agency, 2023. Drought impact on ecosystems in Europe[R]. Copenhagen: EEA. |
[54] | FIGUEIREDO M V B, BURITY H A, MARTÍNEZ C R, et al, 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici[J]. Applied Soil Ecology, 40(1): 182-188. |
[55] | GAETE A, PULGAR R, HODAR C, et al, 2021. Tomato cultivars with variable tolerances to water deficit differentially modulate the composition and interaction patterns of their rhizosphere microbial communities[J]. Frontiers in Plant Science, 12, 688533. DOI:10.3389/fpls.2021.688533. |
[56] | GARGALLO-GARRIGA A, PREECE C, SARDANS J, et al, 2018. Root exudate metabolomes change under drought and show limited capacity for recovery[J]. Scientific Reports, 8, 12696. DOI:10.1038/s41598-018-30150-0. |
[57] |
GHATAK A, SCHINDLER F, BACHMANN G, et al, 2022. Root exudation of contrasting drought-stressed pearl millet genotypes conveys varying biological nitrification inhibition (BNI) activity[J]. Biology and Fertility of Soils, 58(3): 291-306.
DOI PMID |
[58] | GU Z C, HU C J, GAN Y X, et al, 2024. Role of microbes in alleviating crop drought stress: A review[J]. Plants, 13(3), 384. DOI:10.3390/plants13030384. |
[59] | GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I, 2020. The physiology of plant responses to drought[J]. Science, 368(6 488): 266-269. |
[60] |
GUTTMAN D S, MCHARDY A C, SCHULZE-LEFERT P, 2014. Microbial genome-enabled insights into plant-microorganism interactions[J]. Nature Reviews Genetics, 15: 797-813
DOI PMID |
[61] | HE D X, SINGH S K, PENG L, et al, 2022. Flavonoid-attracted Aeromonas sp. From the Arabidopsis root microbiome enhances plant dehydration resistance[J]. The ISME Journal, 16(11): 2 622-2 632. |
[62] | HEREIRA-PACHECO S E, ESTRADA-TORRES A, DENDO-OVEN L, et al, 2023. Shifts in root-associated fungal communities under drought conditions in ricinus communis[J]. Fungal Ecology, 63, 101225. DOI:10.1016/J.FUNECO. 2023.101225. |
[63] |
HU L F, ROBERT C A M, CADOT S, et al, 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 9(1), 2738. DOI:10.1038/s41467-018-05122-7.
PMID |
[64] | IPCC (Intergovernmental Panel on Climate Change), 2022. Climate change 2022: Impacts, adaptation and vulnerability[M]. Cambridge, UK: Cambridge University Press. |
[65] | KASUKAWA N, MIYAZAWA K, 2020. Examining organic acid root exudate content and function for leafy vegetables under water-stressed conditions[J]. Journal of Horticultural Research, 28(2): 83-90. |
[66] | KAZEROONI E A, MAHARACHCHIKUMBURA S S N, ADHIKARI A, et al, 2021. Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes[J]. Frontiers in Plant Science, 12, 669693. DOI:10.3389/fpls.2021.669693. |
[67] | KHAN A, SINGH A V, 2021. Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat[J]. World Journal of Microbiology and Biotechnology, 37(12), 198. DOI:10.1007/s11274-021-03166-4. |
[68] | KHAN A L, ASAF S, ABED R M M, et al, 2020. Rhizosphere microbiome of arid land medicinal plants and extra cellular enzymes contribute to their abundance[J]. Microorganisms, 8(2), 213. DOI:10.3390/microorganisms8020213. |
[69] | KHAN N, MEHMOOD A, 2023. Revisiting climate change impacts on plant growth and its mitigation with plant growth promoting rhizobacteria[J]. South African Journal of Botany, 160: 586-601. |
[70] | KUMAR M, MISHRA S, DIXIT V, et al, 2016. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.)[J]. Plant Signaling & Behavior, 11(1), e1071004. DOI:10.1080/15592324.2015.1071004. |
[71] | KUMAR N, HALDAR S, SAIKIA R, 2023. Root exudation as a strategy for plants to deal with salt stress: An updated review[J]. Environmental and Experimental Botany, 216, 10558. DOI:10.1016/J.ENVEXPBOT.2023.105518 |
[72] | LIU W S, SIKORA E, PARK S W, 2020. Plant growth-promoting rhizobacterium, Paenibacillus polymyxa CR1, upregulates dehydration-responsive genes, RD29A and RD29B, during priming drought tolerance in Arabidopsis[J]. Plant Physiology And Biochemistry, 156: 146-154. |
[73] | MILLER S H, BROWNE P, PRIGENT-COMBARET C, et al, 2010. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species[J]. Environmental Microbiology Reports, 2(3): 403-411. |
[74] | NARAYANASAMY S, THANGAPPAN S, UTHANDI S, 2020. Plant growth-promoting Bacillus sp. cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system[J]. Microbiological Research, 239, 126518. DOI:10.1016/j.micres.2020.126518. |
[75] | NAYLOR D, DEGRAAF S, PURDOM E, et al, 2017. Drought and host selection influence bacterial community dynamics in the grass root microbiome[J]. The ISME Journal, 11(12): 2 691-2 704. |
[76] | NIKHIL P T, FAIZ U, MOHAPATRA S, 2023. The drought-tolerant rhizobacterium, Pseudomonas putida AKMP7, suppresses polyamine accumulation under well-watered conditions and diverts putrescine into GABA under water-stress, in Oryza sativa[J]. Environmental and Experimental Botany, 211, 105377. DOI:10.1016/J.ENVEXPBOT. 2023.105377. |
[77] | PEREIRA L B, GAMBARINI V, MENEZES A D, et al, 2020. Responses of the sugarcane rhizosphere microbiota to different levels of water stress[J]. Applied Soil Ecology, 159: 103817. DOI:10.1016/j.apsoil.2020.103817. |
[78] |
PEREIRA L B, DE OLIVEIRA GAMBARINI V M, DE MENEZES A B, et al, 2022. Influence of sugarcane variety on rhizosphere microbiota under irrigated and water-limiting conditions[J]. Current Microbiology, 79(9), 246. DOI:10.1007/s00284-022-02946-x.
PMID |
[79] | PRAVISYA P, JAYARAM K M, YUSUF A, 2019. Biotic priming with Pseudomonas fluorescens induce drought stress tolerance in Abelmoschus esculentus (L.) Moench (Okra)[J]. Plant and Molecular Biology of Plants, 25(1): 101-112. |
[80] | RIZALUDIN M S, STOPNISEK N, RAAIJMAKERS J M, et al, 2021. The chemistry of stress: Understanding the ‘cry for help’ of plant roots[J]. Metabolites, 11(6), 357. DOI:10.3390/METABO11060357. |
[81] | RUIZ-LOZANO J M, AROCA R, ZAMARREÑO Á M, et al, 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato[J]. Plant, Cell and Environment, 39(2): 441-452. |
[82] | SONG F B, HAN X Y, ZHU X C, et al, 2012. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages[J]. Canadian Journal of Soil Science, 92(3): 501-507. |
[83] | TIZIANI R, MIRAS-MORENO B, MALACRINÒ A, et al, 2022. Drought, heat, and their combination impact the root exudation patterns and rhizosphere microbiome in maize roots[J]. Environmental and Experimental Botany, 203, 105071. DOI:10.1016/J.ENVEXPBOT.2022.105071. |
[84] |
TOJU H, PEAY K G, YAMAMICHI M, et al, 2018. Publisher correction: Core microbiomes for sustainable agroecosystems[J]. Nature Plants, 4(9): 733. DOI:10.1038/s41477-018-0245-3.
PMID |
[85] | United Nations Convention to Combat Desertification, 2023. Global drought snapshot 2023[R]. Paris: UNCCD. |
[86] | WANG A P, LAM S K, HAO X Y, et al, 2018. Elevated CO2 reduces the adverse effects of drought stress on a high-yielding soybean (Glycine max (L.) Merr.) cultivar by increasing water use efficiency[J]. Plant Physiology and Biochemistry, 132: 660-665. |
[87] | WANG D C, JIANG C H, ZHANG L N, et al, 2019. Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants[J]. International Journal of Molecular Sciences, 20(24), 6271. DOI:10.3390/ijms20246271. |
[88] | WILLIAMS A, DE VRIES F T, 2020. Plant root exudation under drought: implications for ecosystem functioning[J]. The New Phytologist, 225(5): 1899-1905. |
[89] | World Food Programme, 2023. Research assessment & monitoring (Ram): more than a fecade of frought-impacts and lessons learned across the Eastern Horn of Africa 2011-2022[R]. Rome: WFP. |
[90] | XING Y J, DAO J C, CHEN M H, et al, 2023. Multi-omics reveals the sugarcane rhizosphere soil metabolism-microbiota interactions affected by drought stress[J]. Applied Soil Ecology, 190, 140994. DOI:10.1016/J.APSOIL.2023.104994 |
[91] | XU L, NAYLOR D, DONG Z B, et al, 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(18): E4284-E4293. |
[92] | XU L, WANG A A, WANG J, et al, 2017. Piriformospora indica confers drought tolerance on Zea mays L. Through enhancement of antioxidant activity and expression of drought-related genes[J]. The Crop Journal, 5(3): 251-258. |
[93] | YADAV B, JOGAWAT A, RAHMAN M S, et al, 2021. Secondary metabolites in the drought stress tolerance of crop plants: A review[J]. Gene Reports, 23, 101040. DOI:10.1016/J.GENREP.2021.101040. |
[94] | YUAN A, KUMAR S D, WANG H T, et al, 2024. Dynamic interplay among soil nutrients, rhizosphere metabolites, and microbes shape drought and heat stress responses in summer maize[J]. Soil Biology and Biochemistry, 191, 109357. DOI:10.1016/J.SOILBIO.2024.109357. |
[95] | ZHAO M L, ZHAO J, YUAN J, et al, 2021. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J]. Plant, Cell and Environment, 44(2): 613-628. |
[1] | LIANG Guohao, MAO Rui, SHAO Yaping, LI Xiaolan, GONG Daoyi. Research progress of convective turbulent dust emission [J]. Journal of Arid Meteorology, 2023, 41(4): 531-539. |
[2] | QI Yue, ZHANG Qiang, HU Shujuan, WANG Runyuan, YANG Yang, LEI Jun, WANG Heling, ZHAO Hong, CHU Chao, JIN Rong. Response of photosynthetic parameters to leaf temperature of spring maize under drought stress [J]. Journal of Arid Meteorology, 2023, 41(2): 215-222. |
[3] | ZHANG Jibo, XUE Xiaoping, ZHANG Xingang, QIU Can, TAN Fangying, LI Nan. Effects of drought stress on mineral element accumulation, yield and grain quality of winter wheat during water critical period [J]. Journal of Arid Meteorology, 2023, 41(2): 223-232. |
[4] | YANG Yang, QI Yue, ZHAO Hong, MA Yihao, ZHU Dan. Effects and evaluations of water stress on growth development and yield of maize during critical growth periods in arid and semi-arid regions [J]. Journal of Arid Meteorology, 2022, 40(6): 1059-1067. |
[5] | CAO Xiaoyun, ZHOU Bingrong, ZHOU Huakun, QIAO Bin, YAN Yuqian, ZHAO Tong, CHEN Qi, ZHAO Huifang, YU Hongyan. Research progress on the impact of climate change on vegetation ecosystem in the Tibetan Plateau [J]. Journal of Arid Meteorology, 2022, 40(6): 1068-1080. |
[6] | ZHANG Jibo,LI Nan,QIU Can,XUE Xiaoping. Effect of Continuous Drought Stress During Critical Period of Water on Photosynthetic Physiology and Yield Formation of Summer Maize [J]. Journal of Arid Meteorology, 2021, 39(5): 734-741. |
[7] | ZHANG Jibo, XUE Xiaoping, LI Nan, LI Hongyi, ZHANG Lei, SONG Jiping. Effects of Water Stress on Photosynthetic Characteristics, Dry Matter Production and Yield of Winter Wheat at Flowering Stage [J]. Journal of Arid Meteorology, 2019, 37(3): 447-. |
[8] | ZHANG Jian, ZHANG Ming, HOU Yunpeng, WANG Huirong, ZHAO Funian. Effects of Drought Stress on Physiological Characteristics and Irrigation Water Use Efficiency of Spring Wheat in Central Gansu [J]. Journal of Arid Meteorology, 2019, 37(1): 139-145. |
[9] | CHEN Wei, LI Yueqing. Main Research Progress on Gravity Waves in the Troposphere [J]. Journal of Arid Meteorology, 2018, 36(5): 717-724. |
[10] | JIANG Jufang 1,2, WANG Heling2, WEI Yuguo, DING Wenkui,YANG Yonglong, REN Liwen, CHENG Qian, YANG Hua. Effects of Different Water Treatments on Growth of Desert Cornulaca Alaschanica and Agropyron Cristatum [J]. Journal of Arid Meteorology, 2016, 34(5): 847-851. |
[11] | REN Liwen, WANG Xingtao, DING Wenkui, YANG Hua, WANG Runyuan. Effects of Drought Stress at Different Growth Stage of Spring Maize on Soil Temperature, Water Content and Yield [J]. Journal of Arid Meteorology, 2016, 34(5): 860-865. |
[12] | ZHAO Hong1, WANG Runyuan, SHANG Yan, WANG Heling,ZHANG Kai, ZHAO Funian, QI Yue, CHEN Fei. Progress and Perspectives in Studies on Responses and Thresholds of Major Food Crops to High Temperature and Drought Stress [J]. Journal of Arid Meteorology, 2016, 34(1): 1-12. |
[13] | . Progress in Research on Low Frequency Oscillation over the Tibetan Plateau [J]. Journal of Arid Meteorology, 2012, 30(1): 107-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com