Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (2): 238-250.DOI: 10.11755/j.issn.1006-7639(2024)-02-0238
• Test and Correction of New Meteorological Data • Previous Articles Next Articles
QIU Jinjing(), CHEN Feng(
), DONG Meiying, FAN Yuemin, YU Zhenshou
Received:
2023-05-04
Revised:
2023-09-05
Online:
2024-04-30
Published:
2024-05-12
通讯作者:
陈锋(1982—),男,博士,正高级工程师,主要从事数值模式及资料同化研究。E-mail: 作者简介:
邱金晶(1988—),女,硕士,高级工程师,主要从事数值预报技术研究和应用。E-mail: jinjing_qiu@163.com。
基金资助:
CLC Number:
QIU Jinjing, CHEN Feng, DONG Meiying, FAN Yuemin, YU Zhenshou. Research on improvement of temperature forecasts of the regional numerical prediction system using CLDAS land data[J]. Journal of Arid Meteorology, 2024, 42(2): 238-250.
邱金晶, 陈锋, 董美莹, 范悦敏, 余贞寿. CLDAS陆面资料对区域数值预报系统气温预报的改进研究[J]. 干旱气象, 2024, 42(2): 238-250.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2024)-02-0238
Fig.2 The 12-hour variation of averages, absolute errors, root mean square errors and correlation coefficients of 0-10 cm soil temperature (a) and 0-10 cm soil moisture (b) of CLDAS and GFS analysis fields in Zhejiang Province in July 2021
Fig.3 Spatial distributions of time correlation coefficients between CLDAS (a, c), GFS analysis fields (b, d) and 0-10 cm soil temperature (a, b), 0-10 cm soil moisture (c, d) in July 2021 in Zhejiang Province
Fig.4 The errors (a), absolute errors (b), root mean square errors (c) and correlation coefficients (d) of average 2 m temperature predicted by TCLDAS and TGFS for 1-72 h validity period starting at 20:00 on 13 July 2021 in Zhejiang Province
Fig.5 Spatial distributions of errors of 2 m temperature of 1-72 h average and the 18th hour, the 42th hour and the 66th hour in Zhejiang Province predicted by TCLDAS and TGFS starting at 20:00 on 13 July 2021 (Unit: °C) (Black quadrilateral is the focus area for the following part)
Fig.6 Difference distributions between CLDAS and GFS surface temperature, soil temperature (Unit: ℃) for different layers and soil moisture (Unit: m3·m-3) for different layers at 20:00 on 13 July 2021
Fig.7 Difference distributions of 0-10 cm soil temperature (Unit: ℃), 0-10 cm soil moisture (Unit: m3·m-3), sensible heat flux (Unit: W·m-2) and latent heat flux (Unit: W·m-2) for 1-72 h average predicted by TCLDAS and TGFS starting at 20:00 on 13 July 2021
Fig.8 The 1-72 h regional averages of 2 m temperature (a) and their difference (b), 0-10 cm soil temperature (c) and their difference (d), 0-10 cm soil moisture (e) and their difference (f), sensible heat flux (g) and their difference (h), latent heat flux (i) and their difference (j) predicted by TCLDAS and TGFS starting at 20:00 on 13 July 2021
时 段 | 试验名称 | 误差/℃ | 绝对误差/℃ | 均方根误差/℃ | 相关系数 |
---|---|---|---|---|---|
1—10日 | TCLDAS | -0.75 | 1.82 | 2.22 | 0.55 |
TGFS | -1.10 | 1.92 | 2.32 | 0.54 | |
11—19日 | TCLDAS | -1.30 | 1.89 | 2.31 | 0.67 |
TGFS | -1.77 | 2.18 | 2.61 | 0.65 | |
20—31日 | TCLDAS | -0.23 | 1.55 | 1.94 | 0.63 |
TGFS | -0.60 | 1.66 | 2.05 | 0.62 |
Tab.1 Evaluation results of 2 m temperature in Zhejiang Province predicted by TCLDAS and TGFS under different weather backgrounds in July 2021
时 段 | 试验名称 | 误差/℃ | 绝对误差/℃ | 均方根误差/℃ | 相关系数 |
---|---|---|---|---|---|
1—10日 | TCLDAS | -0.75 | 1.82 | 2.22 | 0.55 |
TGFS | -1.10 | 1.92 | 2.32 | 0.54 | |
11—19日 | TCLDAS | -1.30 | 1.89 | 2.31 | 0.67 |
TGFS | -1.77 | 2.18 | 2.61 | 0.65 | |
20—31日 | TCLDAS | -0.23 | 1.55 | 1.94 | 0.63 |
TGFS | -0.60 | 1.66 | 2.05 | 0.62 |
Fig.9 Comparison of evaluation parameters of 2 m temperature (≥35 ℃) at 14:00 under different lead time for TCLDAS and TGFS in July 2021 (a) hit rate, (b) threat score, (c) frequency bias
Fig.10 Spatial distributions of average 2 m temperature at 14:00 in July 2021 (Unit: ℃) (a) forecasted by TCLDAS 6 h in advance, (b) forecasted by TGFS 6 h in advance, (c) forecasted by TCLDAS 18 h in advance, (d) forecasted by TGFS 18 h in advance, (e) observation
Fig.11 The spatial distributions of averages and differences of threat scores for daily 2 m temperature (≥35 ℃) at 14:00 predicted by TCLDAS and TGFS in July 2021 (a) forecasted by TCLDAS 6 h in advance, (b) forecasted by TGFS 6 h in advance, (c) difference between TCLDAS and TGFS predictions 6 h in advance, (d) forecasted by TCLDAS 18 h in advance, (e) forecasted by TGFS 18 h in advance, (f) difference between TCLDAS and TGFS predictions 18 h in advance
[1] | 陈锋, 冀春晓, 董美莹, 等, 2012a. 雷达径向风速同化对台风麦莎模拟的影响[J]. 气象, 38(10): 1 170-1 181. |
[2] | 陈锋, 董美莹, 冀春晓, 等, 2012b. WRF模式对浙江2011年夏季降水和温度预报评估及其湿过程敏感性分析[J]. 浙江气象, 33(3): 3-12. |
[3] | 陈燕丽, 黄思琦, 莫建飞, 等, 2020. 基于CLDAS数据的甘蔗干旱监测评估标准对比——以2011年广西干旱为例[J]. 干旱气象, 38(2): 188-194. |
[4] | 崔园园, 张强, 李威, 等, 2020. CLDAS融合土壤相对湿度产品适用性评估及在气象干旱监测中的应用[J]. 海洋气象学报, 40(4): 105-113. |
[5] | 丁金才, 1995. 天气预报评分方法评述[J]. 大气科学学报, 18(1): 143-150. |
[6] |
董祝雷, 赵艳丽, 冯晓晶, 等, 2023. CLDAS气温和降水产品在内蒙古地区适用性分析[J]. 干旱气象, 41(5): 811-819.
DOI |
[7] |
郭阳, 师春香, 徐宾, 等, 2023. CLDAS陆面融合实况数据对天津雾和霾判识的准确性分析[J]. 干旱气象, 41(4): 657-665.
DOI |
[8] | 韩帅, 师春香, 林泓锦, 等, 2015. CLDAS土壤湿度业务产品的干旱监测应用[J]. 冰川冻土, 37(2): 446-453. |
[9] | 刘欢欢, 王飞, 张廷龙, 2018. CLDAS和GLDAS土壤湿度资料在黄土高原的适用性评估[J]. 干旱地区农业研究, 36(5): 270-276+294. |
[10] | 刘佩佩, 宋海清, 鲍炜炜, 等, 2021. CLDAS和GLDAS土壤温度数据在陕西省的适用性评估[J]. 气象科技, 49(4): 604-611. |
[11] | 马柱国, 魏和林, 符淙斌, 2000. 中国东部区域土壤湿度的变化及其与气候变率的关系[J]. 气象学报, 58(3): 278-287. |
[12] | 师春香, 姜立鹏, 朱智, 等, 2018. 基于CLDAS2.0驱动数据的中国区域土壤湿度模拟与评估[J]. 江苏农业科学, 46(4): 231-236. |
[13] | 师春香, 潘旸, 谷军霞, 等, 2019. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 77(4): 774-783. |
[14] | 师春香, 谢正辉, 钱辉, 等, 2011. 基于卫星遥感资料的中国区域土壤湿度EnKF数据同化[J]. 中国科学: 地球科学, 41(3): 375-385. |
[15] | 王莉莉, 龚建东, 2018. 两种OI陆面同化方法在GRAPES_Meso模式中的初步应用试验[J]. 气象, 44(7): 857-868. |
[16] | 王万秋, 1991. 土壤温湿异常对短期气候影响的数值模拟试验[J]. 大气科学, 15(5): 115-123. |
[17] |
温晓培, 吴炜, 李昌义, 等, 2022. 土地利用资料的更新对四川盆地高温天气数值模拟的影响[J]. 干旱气象, 40(5): 868-878.
DOI |
[18] | 徐金芳, 邓振镛, 陈敏, 2009. 中国高温热浪危害特征的研究综述[J]. 干旱气象, 27(2): 163-167. |
[19] | 易翔, 曾新民, 王宁, 等, 2016a. WRF模式中土壤湿度对位势高度模拟影响的敏感性分析[J]. 干旱气象, 34(1): 113-124. |
[20] | 易翔, 曾新民, 郑益群, 等, 2016b. 高分辨率WRF模式中土壤湿度扰动对短期高温天气模拟影响的个例研究[J]. 大气科学, 40(3): 604-616. |
[21] | 余贞寿, 冀春晓, 杨程, 等, 2018. 同化风廓线雷达资料对浙江降水预报改进评估[J]. 应用气象学报, 29(1): 97-110. |
[22] | 曾庆存, 周广庆, 浦一芬, 等, 2008. 地球系统动力学模式及模拟研究[J]. 大气科学, 32(4): 653-690. |
[23] | CHEN F, DUDHIA J, 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Monthly Weather Review, 129(4): 569-585. |
[24] | FAN X G, 2009. Impacts of soil heating condition on precipitation simulations in the weather research and forecasting model[J]. Monthly Weather Review, 137(7): 2 263-2 285. |
[25] | FERRANTI L, VITERBO P, 2006. The European summer of 2003: Sensitivity to soil water initial conditions[J]. Journal of Climate, 19(15): 3 659-3 680. |
[26] | GIARD D, BAZILE E, 2010. Implementation of a new assimilation scheme for soil and surface variables in a global NWP model[J]. Monthly Weather Review, 128(4): 997-1 015. |
[27] | HONG S Y, DUDHIA J, CHEN S H, 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 132(1): 103-120. |
[28] | HONG S Y, PAN H L, 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Monthly Weather Review, 124 (10): 2 322-2 339. |
[29] | IACONO M J, DELAMERE J S, MLAWER E J, et al, 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research (Atmospheres), 113(D13), D13103. DOI:10.1029/2008JD009944. |
[30] | JACOBS C M J, MOORS E J, Ter Maat H W, et al, 2010. Evaluation of European Land Data Assimilation System (ELDAS) products using in situ observations[J]. Tellus A, 60(5): 1 023-1 037. |
[31] | JIMéNEZ P A, DUDHIA J, GONZáLEZ-ROUCO J F, et al, 2012. A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 140(3): 898-918. |
[32] | LIM Y J, LEE T Y, BYUN K Y, 2008. Korea Land Data Assimilation System (KLDAS) and its application using WRF[C]// In 22nd Conference on Hydrology, 88th American Meteorological Society Annual Meeting, New Orleans, LA. |
[33] | MAHANAMA S P P, KOSTER R D, REICHLE R H, 2008. Impact of subsurface temperature variability on surface air temperature variability: An AGCM study[J]. Journal of Hydrometeorology, 9(4): 804-815. |
[34] | PAN H L, MAHRT L, 1987. Interaction between soil hydrology and boundary-layer development[J]. Boundary-Layer Meteorology, 38: 185-202. |
[35] | PETERS-LIDARD C D, BLACKBURN E, LIANG X, et al, 1998. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures[J]. Journal of Atmospheric Sciences, 55(7): 1 209-1 224. |
[36] | RODELL M, HOUSER P R, JAMBOR U, et al, 2004. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 85(3): 381-394. |
[37] | WANG X, PARRISH D, KLEIST D, et al, 2013. GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments[J]. Monthly Weather Review, 141(11): 4 098-4 117. |
[38] | NIU G Y, YANG Z L, MITCHELL K E, et al, 2011. The community Noah land surface model with multi-parameterization options (Noah-MP):1. Model description and evaluation with local-scale measurements[J]. Journal of Geophysical Research (Atmospheres), 116, D12109. DOI: 10.1029/2010JD015139. |
[39] | YANG Z L, NIU G Y, MITCHELL K E, et al, 2011. The community Noah land surface model with multi-parameterization options (Noah-MP):2.Evaluation over global river basins[J]. Journal of Geophysical Research (Atmospheres), 116, D12110. DOI: 10.1029/2010JD015140 |
[40] | ZENG X M, WANG B, ZHANGY, et al, 2014. Sensitivity of high-temperature weather to initial soil moisture: A case study using the WRF model[J]. Atmospheric Chemistry and Physics, 14: 9 623-9 639. |
[41] | ZOU X, QIN Z K, ZHENG Y, 2015. Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF[J]. Monthly Weather Review, 143(7): 2 485-2 505. |
[1] | HUAN Haijun, XU Weiping, LIU Yan, GE Ruiting, CONG Jingcheng, DONG Xuguang. Distribution and variation characteristics of high temperature weather in Shandong [J]. Journal of Arid Meteorology, 2025, 43(1): 64-75. |
[2] | FU Yuan, LIU Hanhua, ZHOU Lingli, ZHAO Junping, MA Hao, LU Tingting, WEI Lei, XUAN Zhuolin. Comparative analysis of characteristics and causes of summer extreme high temperatures in Zhejiang in 2022 and 2013 [J]. Journal of Arid Meteorology, 2025, 43(1): 76-87. |
[3] | ZHANG Yucui, TAN Jianghong, YAN Caixia. Variability characteristics and risk assessment of regional high temperature, drought and their compound events in Hubei Province [J]. Journal of Arid Meteorology, 2024, 42(6): 825-835. |
[4] | XIE Ziyang, LI Changshun, CAI Jiayi, WANG Shanshan. Bibliometric analysis and visualization of the relationship between climate change and soil moisture from 1988 to 2023 [J]. Journal of Arid Meteorology, 2024, 42(6): 953-964. |
[5] | CHEN Xiaoxiao, HUANG Zhiyong, QIN Pengcheng, XIA Zhihong, YAO Yao, TANG Xingzhi, WANG Yingqiong. Atmospheric circulation and sea surface temperature characteristics of summer high temperature anomaly in the middle reaches of the Yangtze River [J]. Journal of Arid Meteorology, 2024, 42(4): 553-562. |
[6] | ZHONG Xue, YANG Minglong, TANG Xiujuan, HAN Aoxi. Progress of satellite remote sensing inversion method for soil moisture [J]. Journal of Arid Meteorology, 2024, 42(4): 637-648. |
[7] | HAN Qinzhe, LIU Hailei, FAN Jiazhi, WU Hao, CHEN Leishi, OU Xiaofeng, HAN Qinzhen. Surface high temperature remote sensing evaluation index construction and characteristic analysis in Hunan Province [J]. Journal of Arid Meteorology, 2024, 42(3): 367-375. |
[8] | LIU Wenying, SUN Suqin, ZHU Xingqiu, OUYANG Xinxin. Analysis and assessment of regional high temperature and drought processes in Jiangxi Province [J]. Journal of Arid Meteorology, 2024, 42(2): 187-196. |
[9] | HUANG Yao, YUAN Meng, GUO Jie, SONG Wenwen, LIU Xinchao. Synoptic circulation patterns clustering analysis and physical diagnosis of high temperature weather in the lower reaches of the Jinsha River [J]. Journal of Arid Meteorology, 2024, 42(2): 217-227. |
[10] | SHA Sha, WANG Lijuan, WANG Xiaoping, HU Die, ZHANG Liang. Study on monitoring method of agricultural drought in Gansu Province based on Temperature Vegetation Dryness Index [J]. Journal of Arid Meteorology, 2024, 42(1): 27-38. |
[11] | GUO Runxia, LIU Xinwei, WANG Yicheng, LIU Na, ZHOU Zihan. Verification and correction of 2 m temperature merging product of CLDAS in Lanzhou and Wuwei, Gansu Province [J]. Journal of Arid Meteorology, 2024, 42(1): 146-155. |
[12] | HE Huigen, ZHANG Chi, WU Yao, LI Yonghua, YANG Qin, MU Yujiao. Characteristics of high temperature and drought during summer in Chongqing and its response to La Niña event [J]. Journal of Arid Meteorology, 2023, 41(6): 873-883. |
[13] | WEI Sentao, WANG Chenghai, ZHANG Feimin, YANG Kai. Study of soil moisture prediction method based on soil temperature and moisture persistence [J]. Journal of Arid Meteorology, 2023, 41(5): 783-791. |
[14] | ZHAO Tuxiang, LI Fusheng, GUO Xiaolei, HU Yue, WEI Jianning, LI Xiaoyu. Study on soil thermal characteristics in wine grape planting area in the eastern foot of Helan Mountain in Ningxia in winter [J]. Journal of Arid Meteorology, 2023, 41(4): 648-656. |
[15] | ZENG Xuan, ZHANG Lanhui, BAI Xuliang, LIU Yu, AN Qi. Evaluation of CLM 5.0 on simulating soil temperature in alpine mountainous area in arid environment [J]. Journal of Arid Meteorology, 2023, 41(3): 368-379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com