Journal of Arid Meteorology ›› 2023, Vol. 41 ›› Issue (1): 14-24.DOI: 10.11755/j.issn.1006-7639(2023)-01-0014
• Articles • Previous Articles Next Articles
ZHANG Wen1,2(), MA Yang1,2, WANG Suyan1,2(
), WANG Dai1,2, LI Xin1,2
Received:
2022-05-17
Revised:
2022-08-10
Online:
2023-02-28
Published:
2023-02-28
张雯1,2(), 马阳1,2, 王素艳1,2(
), 王岱1,2, 李欣1,2
通讯作者:
王素艳(1974—),正高级工程师,主要从事气候与气候变化方面的研究。E-mail: nxwsy_cn@sina.com。作者简介:
张雯(1990—),女,硕士,工程师,主要从事短期气候预测、气候变化方面的研究。 E-mail: acaimeme@sina.cn。
基金资助:
CLC Number:
ZHANG Wen, MA Yang, WANG Suyan, WANG Dai, LI Xin. Circulation characteristics of drought-flood transition from spring to summer over the east region of Northwest China and its relationship with Atlantic sea surface temperature[J]. Journal of Arid Meteorology, 2023, 41(1): 14-24.
张雯, 马阳, 王素艳, 王岱, 李欣. 西北地区东部春夏季旱涝转换环流特征及其与大西洋海温的关系[J]. 干旱气象, 2023, 41(1): 14-24.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2023)-01-0014
年份 | 降水距平百分率/% | Idfa | ||
---|---|---|---|---|
春季 | 夏季 | |||
旱转涝年 (Idfa >0) | 1979 | -55 | 26 | 0.34 |
1981 | -36 | 18 | 0.19 | |
1995 | -71 | 14 | 0.20 | |
1996 | -34 | 24 | 0.26 | |
2020 | -32 | 38 | 0.43 | |
涝转旱年 (Idfa <0) | 1983 | 79 | -14 | -0.20 |
1991 | 71 | -33 | -0.46 | |
1999 | 19 | -20 | -0.15 | |
2015 | 27 | -41 | -0.34 |
Tab.1 The Idfa values and precipitation anomaly percentages in spring and summer of flood-to-drought (drought-to-flood) years over the east region of Northwest China
年份 | 降水距平百分率/% | Idfa | ||
---|---|---|---|---|
春季 | 夏季 | |||
旱转涝年 (Idfa >0) | 1979 | -55 | 26 | 0.34 |
1981 | -36 | 18 | 0.19 | |
1995 | -71 | 14 | 0.20 | |
1996 | -34 | 24 | 0.26 | |
2020 | -32 | 38 | 0.43 | |
涝转旱年 (Idfa <0) | 1983 | 79 | -14 | -0.20 |
1991 | 71 | -33 | -0.46 | |
1999 | 19 | -20 | -0.15 | |
2015 | 27 | -41 | -0.34 |
Fig.1 Composites of 500 hPa geopotential height anomalies in spring (a, c) and summer (b, d) in drought-to-flood years (a, b) and flood-to-drought years (c, d)(Unit: gpm) (the dotted for geopotential height anomalies passing the significance test at the 95% confidence level, the black outlined for the east region of Northwest China. the same as below)
Fig.2 Composites of 100 hPa geopotential height anomalies in spring (the color shaded)(a, c) and 100 hPa geopotential height fields in summer (contours)(b, d) in drought-to-flood (a, b) and flood-to-drought (c, d) years (Unit: gpm) (the dotted for geopotential height anomalies passing the significance test at the 95% confidence level, the black dash line for the east ridge of South Asia high)
Fig.3 Composites of 700 hPa wind anomalies (vectors, Unit: m·s-1, passing significance test at the 90% confidence level ) and water vapor flux divergence anomalies (the color shaded, Unit:10-6 g·kg-1·s-1) in spring (a, c) and summer (b, d) in drought-to-flood years (a, b) and flood-to-drought years (c, d)
Fig.4 The correlation coefficients between DFAI and the Atlantic SST anomalies in the previous winter (a) and spring (b), summer (c) of the current year during 1979-2020 (The dotted is for correlation coefficients passing the significance test at the 95% confidence level, the dark red outlined is the key area of the Atlantic SST anomalies)
季节 | 关键海区1 | 关键海区2 | 关键海区3 |
---|---|---|---|
春季 | 65°W—40°W, 48°N—65°N | 63°W—50°W, 28°N—35°N | 30°W—22°W, 5°N—20°N |
夏季 | 59°W—42°W, 43°N—57°N | 41°W—27°W, 30°N—40°N | 43°W—25°W, 10°N—22°N |
Tab.2 The key areas of the Atlantic SST anomalies in spring and summer
季节 | 关键海区1 | 关键海区2 | 关键海区3 |
---|---|---|---|
春季 | 65°W—40°W, 48°N—65°N | 63°W—50°W, 28°N—35°N | 30°W—22°W, 5°N—20°N |
夏季 | 59°W—42°W, 43°N—57°N | 41°W—27°W, 30°N—40°N | 43°W—25°W, 10°N—22°N |
年份 | |||
---|---|---|---|
旱转涝年 (Idfa >0) | 1979 | -0.33 | 0.58 |
1981 | 0.48 | 0.22 | |
1995 | 0.86 | -0.05 | |
1996 | 0.55 | 0.41 | |
2020 | 0.72 | 0.60 | |
涝转旱年 (Idfa <0) | 1983 | -0.66 | 0.68 |
1991 | -1.29 | -2.09 | |
1999 | 0.44 | 0.03 | |
2015 | -1.14 | -0.70 |
Tab.3 The SST anomalies indices in the Atlantic Ocean in spring and summer in Idfa anomaly years over the eastern region of Northwest China
年份 | |||
---|---|---|---|
旱转涝年 (Idfa >0) | 1979 | -0.33 | 0.58 |
1981 | 0.48 | 0.22 | |
1995 | 0.86 | -0.05 | |
1996 | 0.55 | 0.41 | |
2020 | 0.72 | 0.60 | |
涝转旱年 (Idfa <0) | 1983 | -0.66 | 0.68 |
1991 | -1.29 | -2.09 | |
1999 | 0.44 | 0.03 | |
2015 | -1.14 | -0.70 |
Fig.6 The 500 hPa geopotential height (the color shaded, Unit: gpm; the dotted passing the significance test at the 95% confidence level)(a, b) and 500 hPa stream function (the color shaded, Unit: 105 m2·s-1), the stream function’s wave flux (vectors, Unit: m2·s-2)(c, d) in spring (a, c) and summer (b, d) regressed by the I S S T _ s p r
Fig.7 The wind anomalies at 700 hPa (vectors, Unit: m·s-1) in spring (a) and summer (b) regressed by the I S S T _ s p r (the shaded for values passing the significance test at the 95% confidence level)
Fig.8 The 500 hPa geopotential height (the color shaded, Unit: gpm) in summer regressed by the I S S T _ s u m (the dotted for values passing the significance test at the 95% confidence level)
[1] | 陈文, 康丽华, 王玎, 2006. 我国夏季降水与全球海温的耦合关系分析[J]. 气候与环境研究, 11(3): 259-269. |
[2] | 陈永仁, 李跃清, 齐冬梅, 2011. 南亚高压和西太平洋副热带高压的变化及其与降水的联系[J]. 高原气象, 30(5): 1148-1157. |
[3] | 丁一汇, 王守荣, 2001. 中国西北地区气候与生态环境概论[M]. 北京: 气象出版社. |
[4] | 封国林, 杨涵洧, 张世轩, 等, 2012. 2011年春末夏初长江中下游地区旱涝急转成因初探[J]. 大气科学, 36 (5): 1009-1026. |
[5] | 冯琬, 范广洲, 朱丽华, 等, 2014. 夏季南亚高压与西太平洋副热带高压的相关性分析[J]. 热带气象学报, 30(5): 963-970. |
[6] | 符淙斌, 温刚, 2002. 我国北方干旱化的几个问题[J]. 气候与环境研究, 7(1): 22-29. |
[7] | 黄建平, 季明霞, 刘玉芝, 等, 2013. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 9 (1): 9-14. |
[8] | 江志红, 杨金虎, 张强, 2009. 春季印度洋SSTA对夏季我国西北东部极端降水事件的影响研究[J]. 热带气象学报, 25(6): 641-648. |
[9] | 李维京, 张若楠, 孙丞虎, 等, 2016. 我国南方旱涝年际年代际变化及成因研究进展[J]. 应用气象学报, 27(5): 577-591. |
[10] | 李耀辉, 李栋梁, 2004. ENSO循环对西北地区夏季气候异常的影响[J]. 高原气象, 23(6): 930-935. |
[11] | 刘炜, 赵艳丽, 冯晓晶, 2021. 内蒙古地区夏季旱涝急转环流特征及其预测[J]. 干旱气象, 39(2): 203-214. |
[12] | 卢国阳, 林纾, 王蕊, 等, 2021. 西北地区4月降水异常的环流特征及前兆海温信号[J]. 干旱区地理, 44(5): 1250-1260. |
[13] | 马柱国, 符淙斌, 杨庆, 等, 2018. 关于我国北方干旱化及其转折性变化[J]. 大气科学, 42(4): 951-961. |
[14] | 冉津江, 季明霞, 黄建平, 等, 2014. 我国北方干旱区和半干旱区近60年气候变化特征及成因分析[J]. 兰州大学学报(自然科学版), 50(1): 46-53. |
[15] | 任国玉, 袁玉江, 柳艳菊, 等, 2016. 我国西北干燥区降水变化规律[J]. 干旱区研究, 33(1): 1-19. |
[16] | 任宏昌, 左金清, 李维京, 2017. 1998年和2016年北大西洋海温异常对中国夏季降水影响的数值模拟研究[J]. 气象学报, 75(6): 877-893. |
[17] | 容新尧, 张人禾, LI T, 2010. 大西洋海温异常在ENSO影响印度-东亚夏季风中的作用[J]. 科学通报, 55(14): 1397-1408. |
[18] |
闪丽洁, 张利平, 张艳军, 等, 2018. 长江中下游流域旱涝急转事件特征分析及其与ENSO的关系[J]. 地理学报, 73(1): 25-40.
DOI |
[19] | 时兴合, 郭卫东, 李万志, 等, 2015. 2013年青海北部春季旱涝急转的特征及其成因分析[J]. 冰川冻土, 37 (2): 376-386. |
[20] | 司东, 柳艳菊, 马丽娟, 等, 2012. 2011年初夏我国长江中下游降水的气候特征及成因[J]. 气象, 38(5): 601-607. |
[21] | 孙安健, 郭艳君, 2003. 我国西北地区春季旱涝气候特征研究[J]. 气候与环境研究, 8(1): 1-8. |
[22] | 王宝鉴, 黄玉霞, 何金海, 等, 2004. 东亚夏季风期间水汽输送与西北干旱的关系[J]. 高原气象, 23(6): 912-918. |
[23] | 王岱, 王素艳, 王璠, 等, 2021. 宁夏夏季极端高温变化特征及其与北极海冰的关系[J]. 干旱区研究, 38(5): 1285-1294. |
[24] | 王凤, 孙即霖, 吴德星, 2014. 2011年春夏长江中下游旱涝急转特征及原因分析[J]. 中国海洋大学学报(自然科学版), 44(3): 10-16. |
[25] | 王绍武, 董光荣, 2002. 中国西部环境演变评估(第1卷): 中国西部环境特征及其演变[M]. 北京: 科学出版社. |
[26] | 王素艳, 纳丽, 王璠, 等, 2021. 海冰和海温对西北地区中部6月降水异常的协同影响[J]. 干旱区地理, 44 (1): 63-72. |
[27] |
王雅琦, 冯娟, 李建平, 等, 2020. 西北地区东部夏季降水年际变化特征及其与环流的关系[J]. 高原气象, 39(2): 290-300.
DOI |
[28] | 武炳义, 2018. 北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题[J]. 大气科学, 42(4): 786-805. |
[29] | 邢峰, 韩荣青, 李维京, 2018. 夏季黄河流域降水气候特征及其与大气环流的关系[J]. 气象, 44(10): 1295-1305. |
[30] |
杨建玲, 李艳春, 穆建华, 等, 2015. 热带印度洋海温与西北地区东部降水关系研究[J]. 高原气象, 34(3): 690-699.
DOI |
[31] | 杨金虎, 江志红, 白虎志, 2008. 西北区东部夏季极端降水事件同太平洋SSTA的遥相关[J]. 高原气象, 27(2): 331-338. |
[32] | 杨金虎, 靳荣, 刘晓云, 等, 2017. 西北地区东部汛期降水季节内分布特征分析[J]. 干旱区地理, 40(5): 942-950. |
[33] | 杨金虎, 孙兰东, 林婧婧, 等, 2015. 西北东南部夏季旱涝急转异常分析及预测研究[J]. 自然资源学报, 30 (2): 282-292. |
[34] | 张冰, 刘宣飞, 郑广芬, 等, 2018. 宁夏夏季极端降水日数的变化规律及其成因[J]. 大气科学学报, 41(2): 176-185. |
[35] | 张存杰, 谢金南, 李栋梁, 等, 2002. 东亚季风对西北地区干旱气候的影响[J]. 高原气象, 21(2): 193-198. |
[36] | 张雯, 马阳, 李欣, 等, 2020. 赤道太平洋海温异常对宁夏7月降水的影响[J]. 干旱气象, 38(4): 543-551. |
[37] | 张宇, 李耀辉, 王式功, 等, 2014. 中国西北地区旱涝年南亚高压异常特征[J]. 中国沙漠, 34(2): 535-541. |
[38] | 赵红岩, 王有恒, 王兴, 等, 2012. 1961—2008年中国西北东部旱涝异常分布及干旱变化特征[J]. 干旱区地理, 35(4): 552-558. |
[39] | 赵振国, 1998. 中国夏季旱涝与环境场[M]. 北京: 气象出版社, 56-65. |
[40] | 左金清, 李维京, 任宏利, 等, 2012. 春季北大西洋涛动与东亚夏季风年际关系的转变及其可能成因分析[J]. 地球物理学报, 55(2): 384-395. |
[41] |
DESER C, MAGNUSDOTTIR G, SARAVANAN R, et al, 2004. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response[J]. Journal of Climate, 17(5): 877-889.
DOI URL |
[42] |
GU W, LI C, WANG X, et al, 2009. Linkage between Mei-yu precipitation and North Atlantic SST on the decadal timescale[J]. Advances in Atmospheric Sciences, 26(1): 101-108.
DOI URL |
[43] |
KALNAY E, KANAMITSU M, KISTLER R, et al, 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 77(3): 437-471.
DOI URL |
[44] |
MA Y, YANG Y, WANG C, 2019. How essential of the balance between large and small scale features to reproduce precipitation during a sudden sharp turn from drought to flood[J]. Climate Dynamic, 52(7): 5013-5029.
DOI URL |
[45] |
RAYNER N A, PARKER D E, HORTON E B, et al, 2003. Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research, 108(D14): 4404.
DOI URL |
[46] |
WANG H, LIU G, CHEN J, 2017. Contribution of the tropical western Atlantic thermal conditions during the preceding winter to summer temperature anomalies over the lower reaches of the Yangtze River basin-Jiangnan region[J]. International Journal of Climatology, 37(13): 4631-4642.
DOI URL |
[47] |
WU Z, LI J, HE J, et al, 2006. Occurrence of droughts and floods during the normal summer monsoons in the mid-and lower reaches of the Yangtze River[J]. Geophysical Research Letters, 33(5), L05813. DOI: 10.1029/2005GL-024487
DOI |
[48] |
YANG S, WU B, ZHANG R, et al, 2013. Relationship between an abrupt drought-flood transition over mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation over mid-high latitudes of East Asia[J]. Acta Meteorologica Sinica, 27(2): 129-143.
DOI URL |
[49] |
ZONG H F, BUEH C, CHEN L T, et al, 2012. A typical mode of seasonal circulation transition: a climatic view of the abrupt transition from drought to flood over the middle and lower reaches of the Yangtze River Valley in the late spring and early summer of 2011[J]. Atmospheric and Oceanic Science Letters, 5(5): 349-354.
DOI URL |
[1] | KANG Hengyuan, LIU Yulian, ZHOU Heling, YUAN Fang. Heterogeneity characteristics and influencing factors of summer precipitation in Heilongjiang Province [J]. Journal of Arid Meteorology, 2023, 41(2): 268-278. |
[2] | MA Yang, CUI Yang, ZHANG Wen, LI Xin. Projection of the future temperature changes of Yellow River Basin Ningxia section based on CMIP6 models [J]. Journal of Arid Meteorology, 2023, 41(1): 43-53. |
[3] | LIU Lei, LI Luan, ZHANG Li, SUN Dabing, ZHANG Xiaoyi. Construction of temperature series and its decadal characteristics from 1880 to 2020 in Wuhu of Anhui Province [J]. Journal of Arid Meteorology, 2022, 40(5): 831-839. |
[4] | LOU Dejun, LI Yongsheng, WANG Yongguang, CHEN Chen, ZHANG Jian. Preliminary study on the causes of extremely less precipitation in Heilongjiang Province in July 2020 [J]. Journal of Arid Meteorology, 2022, 40(3): 396-405. |
[5] | CEHN Xiaochen, TANG Zhenfei, CHEN Xikuan, ZHENG Chaoyu, LI Xinxin, YANG Ting. Projection of extreme temperature in Fujian based on CMIP6 output [J]. Journal of Arid Meteorology, 2022, 40(3): 415-423. |
[6] | XU Weiping, MENG Xiangxin, GU Weizong, BO Zhongkai. Relationship between extremely low temperature in spring in Shandong Province and North Atlantic SST in preceding winter [J]. Journal of Arid Meteorology, 2022, 40(2): 202-211. |
[7] | CHEN Ying, ZHANG Dongfeng, WANG Lin, LIU Yueli, WANG Dayong. Estimation of climate change in the 21st century in North China by RegCM4 [J]. Journal of Arid Meteorology, 2022, 40(1): 1-10. |
[8] | WANG Min, YIN Yixing, CHEN Xiaoyang, GUO Yang, XU Mei, LUO Chuanjun. Changing characteristics of meteorological drought in Tianjin for almost one century based on standardized precipitation evapotranspiration index [J]. Journal of Arid Meteorology, 2022, 40(1): 11-21. |
[9] | LI Hongying, LIN Shu, WANG Yunpeng, HUANG Pengcheng, YU Yanan. Characteristics of cold wave activities in Beijing-Tianjin-Hebei region from 1961 to 2017 [J]. Journal of Arid Meteorology, 2022, 40(1): 41-48. |
[10] | CHENG Jianbo, ZUO Dongdong, YAN Pengcheng. Influence of fake below-ground meridional wind on regional Hadley circulation in Africa [J]. Journal of Arid Meteorology, 2021, 39(06): 900-910. |
[11] | ZHOU Yaman, SUN Di, ZHAO Yong, LI Anbei, GUO Yulin. Characteristics of Wide-range Extreme Precipitation in Summer and Its Circulation Anomalies in Northern Xinjiang#br# [J]. Journal of Arid Meteorology, 2021, 39(2): 215-224. |
[12] | GUO Guangfen, DU Liangmin, XIAO Ying, GAO Yaqi, WU Yao. Spatio-temporal Distribution Characteristics of Summer Extreme Precipitation in the Yangtze River Basin [J]. Journal of Arid Meteorology, 2021, 39(2): 235-243. |
[13] | HUANG Helou, DING Yeyi, TU Xiaoping, ZHAO Changyu, YAO Risheng. Impact of Urbanization on Extreme Temperature and Human Comfort Degree in Ningbo City [J]. Journal of Arid Meteorology, 2020, 38(03): 396-403. |
[14] | ZHU Yongning, FENG Dongpu, LI Hongying, DUAN Xiaofeng, ZHENG Fang. Temporal and Spatial Change Characteristics of the Minimum Temperature and Frost Days During the Spring Frost Stage in Ningxia [J]. Journal of Arid Meteorology, 2020, 38(2): 256-262. |
[15] | JIN Hongmei, QIAO Liang, YAN Pengcheng, ZHANG Wei, GAO Shiyu, ZHANG Jin. Nonlinear Characteristics of Drought in Northwest China Based on Approximate Entropy [J]. Journal of Arid Meteorology, 2019, 37(5): 713-721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com