[1] |
傅华, 贾丽红, 肖继东, 等, 2011. 阿克苏地区库玛拉克河流域融雪洪水分型及成因[J]. 干旱区研究, 28(3): 433-437.
|
[2] |
胡晓静, 郝晓华, 王建, 等, 2021. 基于AMSR2和MODIS数据融合的雪深降尺度算法研究—以北疆地区为例[J]. 遥感技术与应用, 36(6): 1 236-1 246.
|
[3] |
毛炜峄, 张旭, 杨志华, 等, 2010. 卫星遥感首次监测到准噶尔盆地西北部的冬季融雪洪水[J]. 冰川冻土, 32(1): 211-214.
|
[4] |
王建, 车涛, 李震, 等, 2018. 中国积雪特性及分布调查[J]. 地球科学进展, 33(1): 12-26.
DOI
|
[5] |
王亮, 张性慧, 刘柱, 2016. 新疆中高山区融雪洪水计算方法的探讨[J]. 电力勘测设计(增刊2): 72-75.
|
[6] |
朱光熙, 效存德, 陈波, 等, 2020. 气候变化背景下黑河上游春季融雪洪水预估研究[J]. 气候变化研究进展, 16(6): 667-678.
|
[7] |
AHMADALIPOUR A, MORADKHANI H, 2019. A data-driven analysis of flash flood hazard, fatalities, and damages over the CONUS during 1996-2017[J]. Journal of Hydrology, 578, 124106. https://doi.org/10.1016/j.jhydrol.2019.124106.
|
[8] |
BENISTON M, STOFFEL M, 2016. Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4 ℃ and decrease thereafter[J]. Science of the Total Environment, 571: 228-236.
|
[9] |
BLIÖSCHL G, HALL J, PARAJKA J, et al, 2017. Changing climate shifts timing of European flood[J]. Science, 357: 588-590.
|
[10] |
BROWN M E, RACOVITEANU A E, TARBOTON D G, et al, 2014. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas[J]. Journal of Hydrology, 519: 1 859-1 869.
|
[11] |
COPPOLA E, RAFFAELE F, GIORGI F, 2018. Impact of climate change on snow melt driven runoff timing over the Alpine region[J]. Climate Dynamic, 51: 1 259-1 273.
|
[12] |
DEBEER C M, POMEROY J W, 2017. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment[J]. Journal of Hydrology, 553: 199-213.
|
[13] |
DEMUTH N, RADEMACHER S, 2016. Flood forecasting in Germany—Challenges of a federal structure and transboundary cooperation[M]// Flood Forecasting: A Global Perspective. Cambridge: Academic Press: 125-151.
|
[14] |
DONG C Y, 2018. Remote sensing, hydrological modeling and in-situ observations in snow cover research: A review[J]. Journal of Hydrology, 561: 573-583.
|
[15] |
FERGUSON R, 1999. Snowmelt runoff models[J]. Progress in Physical Geography, 23(2): 205-227.
|
[16] |
HAN P F, LONG D, HAN Z Y, et al, 2019. Improved understanding of snowmelt runoff from the headwaters of China’s Yangtze River using remotely sensed snow products and hydrological modeling[J]. Remote Sensing of Environment, 224: 44-59.
|
[17] |
HAO X H, HUANG G H, ZHENG Z J, et al, 2022. Development and validation of a new MODIS snow-cover-extent product over China[J]. Hydrology and Earth System Sciences, 26: 1 937-1 952.
|
[18] |
IPCC, 2022. Global warming of 1.5 ℃[M]. Cambridge: Cambridge University Press: 93-174.
|
[19] |
JENNINGS K S, KITTEL T G F, MOLOTCH N P, 2018. Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget[J]. The Cryosphere, 12(5): 1 595-1 614.
|
[20] |
LI C B, QI J G, WANG S B, et al, 2015. Spatial characteristics of alpine snow and ice melt under a changing regional climate: A case study in Northwest China[J]. Quaternary International, 358: 126-136.
|
[21] |
SLATER A G, SCHLOSSER C A, DESBOROUGH C E, et al, 2001. The representation of snow in land surface schemes: Results from PILPS 2 (d)[J]. Journal of Hydrometeorology, 2(1): 7-25.
|
[22] |
SU W, ZHANG X D, WANG Z, et al, 2011. Analyzing disaster-forming environments and the spatial distribution of flood disasters and snow disasters that occurred in China from 1949 to 2000[J]. Mathematical and computer modelling, 54(3/4): 1 069-1 078.
|