Journal of Arid Meteorology ›› 2022, Vol. 40 ›› Issue (5): 804-813.DOI: 10.11755/j.issn.1006-7639(2022)-05-0804
• Articles • Previous Articles Next Articles
HAN Yuanyuan1(), LUO Jiali2(
), WANG Feiyang3, LI Shentao1
Received:
2022-05-05
Revised:
2022-07-06
Online:
2022-10-31
Published:
2022-11-10
Contact:
LUO Jiali
通讯作者:
雒佳丽
作者简介:
韩元元(1990—),女,讲师,主要从事平流层与对流层相互作用研究.E-mail:hanyy18@xpu.edu.cn。
基金资助:
CLC Number:
HAN Yuanyuan, LUO Jiali, WANG Feiyang, LI Shentao. Analysis of response of atmosphere to sea surface temperature anomaly over the Tropical Pacific Ocean in the future under the RCP8.5 scenario[J]. Journal of Arid Meteorology, 2022, 40(5): 804-813.
韩元元, 雒佳丽, 王飞洋, 李申涛. RCP8.5情景下未来热带太平洋海域大气对海表温度的响应分析[J]. 干旱气象, 2022, 40(5): 804-813.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2022)-05-0804
序号 | 模式名 | 相关系数 | 序号 | 模式名 | 相关系数 |
---|---|---|---|---|---|
1 | ACCESS1.0 | -0.20 | 17 | HadGEM2-CC | -0.07 |
2 | ACCESS1.3 | -0.26 | 18 | HadGEM2-ES | -0.36 |
3 | CMCC-CM | -0.10 | 19 | INM-CM4 | 0.02 |
4 | CMCC-CMS | -0.43 | 20 | IPSL-CM5A-LR | -0.52 |
5 | CNRM-CM5 | -0.41 | 21 | IPSL-CM5A-MR | -0.65 |
6 | CSIRO-Mk3.6.0 | -0.73 | 22 | IPSL-CM5B-LR | -0.33 |
7 | CanESM2 | -0.64 | 23 | MIROC-ESM | -0.08 |
8 | FGOALS-s2 | -0.64 | 24 | MIROC-ESM-CHEM | -0.19 |
9 | GFDL-CM3 | -0.60 | 25 | MIROC5 | -0.10 |
10 | GFDL-ESM2G | -0.55 | 26 | MPI-ESM-LR | -0.35 |
11 | GFDL-ESM2M | -0.75 | 27 | MPI-ESM-MR | -0.39 |
12 | GISS-E2-H | -0.56 | 28 | MRI-CGCM3 | -0.23 |
13 | GISS-E2-H-CC | -0.50 | 29 | NorESM1-ME | -0.67 |
14 | GISS-E2-R | -0.50 | 30 | NorESM1-M | -0.65 |
15 | GISS-E2-R-CC | -0.45 | 31 | CMCC-CESM | -0.73 |
16 | HadGEM2-AO | -0.24 | 32 | MRI-ESM1 | -0.23 |
Tab.1 The correlation coefficients between SST and OLR averaged over the Tropical Pacific Ocean region for the period 2006-2019 based on CMIP5 model simulations
序号 | 模式名 | 相关系数 | 序号 | 模式名 | 相关系数 |
---|---|---|---|---|---|
1 | ACCESS1.0 | -0.20 | 17 | HadGEM2-CC | -0.07 |
2 | ACCESS1.3 | -0.26 | 18 | HadGEM2-ES | -0.36 |
3 | CMCC-CM | -0.10 | 19 | INM-CM4 | 0.02 |
4 | CMCC-CMS | -0.43 | 20 | IPSL-CM5A-LR | -0.52 |
5 | CNRM-CM5 | -0.41 | 21 | IPSL-CM5A-MR | -0.65 |
6 | CSIRO-Mk3.6.0 | -0.73 | 22 | IPSL-CM5B-LR | -0.33 |
7 | CanESM2 | -0.64 | 23 | MIROC-ESM | -0.08 |
8 | FGOALS-s2 | -0.64 | 24 | MIROC-ESM-CHEM | -0.19 |
9 | GFDL-CM3 | -0.60 | 25 | MIROC5 | -0.10 |
10 | GFDL-ESM2G | -0.55 | 26 | MPI-ESM-LR | -0.35 |
11 | GFDL-ESM2M | -0.75 | 27 | MPI-ESM-MR | -0.39 |
12 | GISS-E2-H | -0.56 | 28 | MRI-CGCM3 | -0.23 |
13 | GISS-E2-H-CC | -0.50 | 29 | NorESM1-ME | -0.67 |
14 | GISS-E2-R | -0.50 | 30 | NorESM1-M | -0.65 |
15 | GISS-E2-R-CC | -0.45 | 31 | CMCC-CESM | -0.73 |
16 | HadGEM2-AO | -0.24 | 32 | MRI-ESM1 | -0.23 |
Fig.1 The distribution of climate states of SST from 1979 to 2019 based on ERSST (a) and from 1979 to 2005 based on CMIP5 GFDL-ESM2G historical simulations (b), and SST from 2006 to 2030 (c) and from 2080 to 2100 (d) simulated by the CMIP5 GFDL-ESM2G model (Unit: ℃)
试验 | 详细说明 |
---|---|
E1(对照试验) | Hadley中心1980—2015年的气候平均态,热带太平洋的背景SST为27 °C |
E2(敏感性试验) | 在试验E1基础上,叠加SST异常 |
E3(对照试验) | 同E1,热带太平洋的背景SST为29 °C |
E4(敏感性试验) | 在试验E3基础上,叠加SST异常 |
Tab.2 Description of the CAM5 experiments
试验 | 详细说明 |
---|---|
E1(对照试验) | Hadley中心1980—2015年的气候平均态,热带太平洋的背景SST为27 °C |
E2(敏感性试验) | 在试验E1基础上,叠加SST异常 |
E3(对照试验) | 同E1,热带太平洋的背景SST为29 °C |
E4(敏感性试验) | 在试验E3基础上,叠加SST异常 |
Fig.2 The 20-year sliding correlation between SST and OLR averaged over the Tropical Pacific Ocean region for the period 2006-2100 (a), and correlation coefficients between SST and OLR during 2006-2030 (b) and 2080-2100 (c) based on simulations of CMIP5 GFDL-ESM2G model
Fig.3 The 20-year sliding correlation between SST and OLR averaged over the Tropical Pacific Ocean region for the period of 2006-2100 based on simulations of CMIP5 11 models
Fig.4 Spatial distribution of correlation coefficients between SST and vertical velocity (a, b), 200 hPa geopotential height (c, d) anomaly during the period 2006-2030 (a, c) and 2080-2100 (b, d) over the Tropical Pacific Ocean region based on simulations of CMIP5 GFDL-ESM2G model
Fig.5 The20-year sliding correlation coefficient between SST and OLR averaged over the Tropical Pacific Ocean region during the period 2006-2100 based on the simulation of CMIP5 CMCC-CESM model (a), correlation coefficients between SST and OLR (b, c), anomaly of vertical velocity (d, e), anomaly of geopotential height at 200 hPa (f, g) during 2006-2030 (b, d, f) and 2080-2100 (c, e, g), respectively
Fig.7 The anomalies of OLR (a, b, Unit: W·m-2), vertical velocity (c, d, Unit: m·s-1) and geopotential height at 200 hPa (e, f, Unit: gpm) from simulations of CAM5 experiments in the context of 2000 (a, c, e) and 2100 (b, d, f) background SST
Fig.8 Regression coefficient of SST over the Tropical Pacific Ocean simulated by CMIP5 CMCC-CESM model on stratospheric temperature anomaly during the period of 2006-2030 (a) and 2080-2100 (b) (the dotted for regression coefficients passing the significance test at the 95% confidence level), and anomalies of stratospheric temperature simulated by CAM5 experiments in the context of 2000 (c) and 2100 (d) background SST (Unit: K)
[1] | 王绍武. 从“气候”到“全球气候系统”概念的发展[J]. 气象科技进展, 2011, 1(3): 28-30. |
[2] | 李建平. 亚印太交汇区海气相互作用及其对我国短期气候的影响[M]. 北京: 气象出版社, 2011: 566. |
[3] | 李崇银. 气候动力学引论[M]. 2版. 北京: 气象出版社, 2000: 515. |
[4] |
TRENBERTH K E, CARON J M. Estimates of meridional atmosphere and ocean heat transports[J]. Journal of Climate, 2001, 14(16): 3433-3443.
DOI URL |
[5] | 肖福安. 北太平洋海表温度变化及其对北极气温的影响[D]. 北京: 中国气象科学研究院, 2014. |
[6] | 钟权加, 张立凤, 丁瑞强, 等. 华南夏季降水的变化特征及其与热带太平洋海温异常的关系[J]. 气候变化研究进展, 2016, 12(1): 28-36. |
[7] |
XIE F, ZHOU X, LI J. et al. Effect of the Indo-Pacific Warm Pool on lower stratospheric water vapor and comparison with the effect of ENSO[J]. Journal of Climate, 2018, 31(3):929-943.
DOI URL |
[8] | 郝立生, 陆维松. 热带海温异常影响华北夏季降水的机制研究[J]. 干旱气象, 2006, 24(2): 5-11. |
[9] | 刘青春, 时兴合, 汪青春, 等. 青藏高原春夏季温度与太平洋海温的关系[J]. 干旱气象, 2008, 26(2): 29-33. |
[10] | 黎鑫, 李崇银. 两类El Niño的发生与赤道太平洋次表层海温异常[J]. 科学通报, 2014, 59(21):2098-2107. |
[11] | 陈永利, 唐晓晖, 王凡, 等. ENSO事件次表层海温的两个模态及其对大气环流的影响[J]. 海洋与湖沼, 2020, 51(4): 851-860. |
[12] | 马振锋, 高文良. 热带海温变化与高原季风发展[J]. 应用气象学报, 2002, 13(4):440-447. |
[13] | 黄荣辉, 孙凤英. 热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响[J]. 大气科学, 1994, 18(2):141-151. |
[14] | 李琰, 王亚非, 魏东, 等. 前期热带太平洋、印度洋海温异常对长江流域及以南地区6月降水的影响[J]. 气象学报, 2007, 65(3): 393-405. |
[15] | 黄荣辉, 李维京. 夏季热带西太平洋上空的热源异常对东亚上空副热带高的影响及其物理机制[J]. 大气科学, 1988, 12(增刊1):107-116. |
[16] | HUANG R, LU L. Numerical simulation of the relationship between the anomaly of the subtropical high over East Asia and the convective activities in the tropical Western pacific[J]. Advances in Atmospheric Sciences, 1989(6):202-214. |
[17] | IPCC. Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on climate change[M]. New York: Cambridge University Press, 2007: 996. |
[18] |
KHALIL I, ATKINSON P M, CHALLENOR P, et al. Looking back and looking forwards: historical and future trends in sea surface temperature (SST) in the Indo-Pacific region from 1982 to 2100[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 45: 14-26.
DOI URL |
[19] | 李扬, 陈权亮, 蔡宏珂, 等. 全球变暖背景下热带太平洋海温长期趋势研究[J]. 气候与环境研究, 2019, 24(6):723-734. |
[20] | BJERKNES J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature[J]. Tellus, 1966, 18(4): 820-829. |
[21] |
GRAHAM N E, BARNETT T P. Sea surface temperature, surface wind divergence, and convection over tropical oceans[J]. Science, 1987, 238(4827): 657-659.
DOI URL |
[22] |
GUTZLER D S, WOOD T M. Structure of large-scale convective anomalies over tropical oceans[J]. Journal of Climate, 1990, 3(4): 483-496.
DOI URL |
[23] | NEWELL R E. Climate and the ocean[J]. American Scientist, 1979, 67(4):405-416. |
[24] |
WEBSTER P J. Response of the Tropical Atmosphere to Local, Steady Forcing[J]. Monthly Weather Review, 1972, 100(7):518-541.
DOI URL |
[25] |
TAYLOR K E, STOUFFER R J, MEEHL G A. An Overview of CMIP5 and the Experiment Design[J]. Bulletin of the American Meteorological Society, 2012, 93(4):485-498.
DOI URL |
[26] | 黄传江, 乔方利, 宋亚娟, 等. CMIP5模式对南海SST的模拟和预估[J]. 海洋学报, 2014, 36(1): 38-47. |
[27] |
DONNER L J, WYMAN B L, HEMLER R S, et al. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3[J]. Journal of Climate, 2011, 24(13): 3484-3519.
DOI URL |
[28] | NEALE R B, GETTELMAN A, PARK S, et al. Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR/TN-486+STR, 2010. |
[29] |
RAYNER N A, BROHAN P, PARKER D E, et al. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset[J]. Journal of Climate, 2006, 19(3): 446-469.
DOI URL |
[1] | LI Liang, YANG Zesu, HE Hang. Evapotranspiration-precipitation coupling strength response to hydrothermal factors over northern China [J]. Journal of Arid Meteorology, 2022, 40(5): 791-803. |
[2] | DI Yanjun, ZENG Dingwen, ZHANG Wenbo, YAN Xiaomin, AN Xiaodong, CHEN Cheng, HAN Wenting, LIU Yuanpu. Influence of dry/wet soil state on land-atmosphere coupling over eastern and southern Asia [J]. Journal of Arid Meteorology, 2022, 40(3): 345-353. |
[3] | DU Haolin, WANG Sheng, QIAO Liang, SUN Xuying. Analysis of instrument accuracy and observation error of land surface process observation experiment in semi-arid area [J]. Journal of Arid Meteorology, 2022, 40(3): 364-374. |
[4] | XU Weiping, MENG Xiangxin, GU Weizong, BO Zhongkai. Relationship between extremely low temperature in spring in Shandong Province and North Atlantic SST in preceding winter [J]. Journal of Arid Meteorology, 2022, 40(2): 202-211. |
[5] | YANG Yang, YANG Qidong, WANG Zhilan, GAO Lu. A Study of Spatial and Temporal Distribution of Land Atmosphere Coupling Strength in China [J]. Journal of Arid Meteorology, 2021, 39(3): 374-385. |
[6] | LIU Wei, ZHAO Yanli, FENG Xiaojing. Circulation Anomaly Characteristics and Prediction of Drought and Flood Abrupt Alternations in Summer in Inner Mongolia [J]. Journal of Arid Meteorology, 2021, 39(2): 203-214. |
[7] | XING Caiying, WU Shengan, HU Deqiang, ZHU Jingjing. Analysis of cause of abnormally high temperature in Hainan Island in spring 2019 [J]. Journal of Arid Meteorology, 2021, 39(06): 911-920. |
[8] | ZHANG Wen, MA Yang, LI Xin, ZHENG Guangfen, WANG Suyan, HUANG Ying. Effect of Equatorial Pacific SSTA on Precipitation in July in Ningxia [J]. Journal of Arid Meteorology, 2020, 38(4): 543-551. |
[9] | HUANG Shan, YANG Yang, WANG Hanjia, YANG Qidong. Spatio-temporal Characteristics of Sensible and Latent Heat Flux in Southwest China [J]. Journal of Arid Meteorology, 2020, 38(4): 601-611. |
[10] | Lü Xingyue, RONG Yanshu, SHI Dandan. Reanalysis on the Causes of Continuous Drought from Autumn 2010 to Spring 2011 in the Middle and Lower Reaches of the Yangtze River [J]. Journal of Arid Meteorology, 2019, 37(2): 198-208. |
[11] | CAI Xinling, LI Yu, LI Qian, HU Shulan. Climatic Characteristics of Autumn Rain in Shaanxi and Their Relationship with Atmospheric Circulation and SST During 1961-2016 [J]. Journal of Arid Meteorology, 2019, 37(2): 226-232. |
[12] | LIU Jiahuimin, ZHENG Ran, LOU Panxing, LIANG Mian. Causes of Heat Wave Weather in Shaanxi in July 2017 and Preceding Signals [J]. Journal of Arid Meteorology, 2019, 37(2): 233-242. |
[13] | XING Caiying, HU Deqiang, WU Shengan, LI Haiyan. Analysis of Characteristics of Drought-Flood Abrupt Alternation and Its Atmosphere-Ocean Anomalies During the Post-Flood Period in Hainan Island [J]. Journal of Arid Meteorology, 2018, 36(4): 568-577. |
[14] | QUE Zhiping, WU Fan, ZHOU Junhui. Rainfall Anomaly and Its Causes in Jiangxi Province in November 2015 [J]. Journal of Arid Meteorology, 2018, 36(2): 263-271. |
[15] | CHEN Yan, GUO Shichang, LIU Yu, JU Jianhua, REN Juzhang, ZHANG Huizhu. Spatial and Temporal Characteristics of the Onset Date of Rainy Season in Yunnan and Its Relationship with ENSO [J]. Journal of Arid Meteorology, 2017, 35(4): 545-551. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com