[1] |
白肇烨, 徐国昌, 1988. 中国西北天气[M]. 北京: 气象出版社.
|
[2] |
毕硕本, 孙力, 李兴宇, 等, 2018. 基于EEMD的1470—1911年黄河中下游地区旱涝灾害多时间尺度特征分析[J]. 自然灾害学报, 27(1):137-147.
|
[3] |
陈少勇, 王劲松, 郭俊庭, 等, 2012. 中国西北地区1961—2009年极端高温事件的演变特征[J]. 自然资源学报, 27(5): 832-844.
DOI
|
[4] |
程捷, 张绪教, 田明中, 等, 2006. 黄河源区冰楔假型群的发育及其古气候意义[J]. 第四纪研究, 26(1):92-98.
|
[5] |
李万莉, 王可丽, 傅慎明, 等, 2008. 区域西风指数对西北地区水汽输送及收支的指示性[J]. 冰川冻土, 30(1):28-34.
|
[6] |
林纾, 李红英, 黄鹏程, 等, 2022. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 40(5): 748-763.
DOI
|
[7] |
马浩, 刘昌杰, 钱奇峰, 等, 2020. 2018年5月浙江省极端高温气候特征及环流背景[J]. 干旱气象, 38(6): 909-919.
|
[8] |
梅梅, 高歌, 李莹, 等, 2023. 1961—2022年长江流域高温干旱复合极端事件变化特征[J]. 人民长江, 54(2): 12-20.
|
[9] |
汤懋苍, 沈志宝, 陈有虞, 1979. 高原季风的平均气候特征[J]. 地理学报, 34(1): 33-42.
DOI
|
[10] |
唐懿, 蔡雯悦, 翟建青, 等, 2022. 2021年夏季中国气候异常特征及主要气象灾害[J]. 干旱气象, 40(2): 179-186.
DOI
|
[11] |
王可丽, 江灏, 吴虹, 2001. 南亚夏季风年际变化特征分析[J]. 高原气象, 20(3): 318-324.
|
[12] |
魏凤英, 2007. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社.
|
[13] |
魏明华, 2021. 中国北方季风边缘区1960—2010年夏季气候干湿变化的时空特征及影响因素[D]. 兰州: 兰州大学.
|
[14] |
武新英, 郝增超, 张璇, 等, 2021. 中国夏季复合高温干旱分布及变异趋势[J]. 水利水电技术:中英文, 52(12): 90-98.
|
[15] |
杨金虎, 张强, 杨博成, 等, 2023. 黄河上游暖湿化的多时间尺度特征及对生态植被的影响[J]. 高原气象, 42(4): 1 018-1 030.
|
[16] |
余荣, 翟盘茂, 2021. 关于复合型极端事件的新认识和启示[J]. 大气科学学报, 44(5): 645-649.
|
[17] |
郑本兴, 王苏民, 1996. 黄河源区的古冰川与古环境探讨[J]. 冰川冻土, 18(3): 210-218.
|
[18] |
HAO Z C, 2022. Compound events and associated impacts in China[J]. iScience, 25(8): 104689. DOI:10.1016/j.isci.2022.104689.
|
[19] |
HUANG N E, SHEN S P, 2005. Hibert-Huang transform and its applications[M]. Singapore: World Scientific Publishing Co Pte Ltd: 56-62.
|
[20] |
IPCC, 2021. Climate Change: The Physical Science Basis[M]. Cambridge: Cambridge University Press.
|
[21] |
LYU X M, ZHOU G S, ZHOU M Z, et al, 2019. Projection of heat injury to single-cropping rice in the middle and lower reaches of the Yangtze River, China under future global warming scenarios[J]. Journal of Meteorological Research, 33(2): 363-374.
|
[22] |
MUKHERJEE S, ASHFAQ M, MISHRA A K, 2020. Compound drought and heatwaves at a global scale: The role of natural climate variability‐associated synoptic patterns and land‐surface energy budget anomalies[J]. Journal of Geophysical Research: Atmospheres, 125(11): e2019JD031943.DOI:10.1029/2019JD031943.
|
[23] |
WANG B, FAN Z, 1999. Choice of south Asian summer monsoon indices[J]. Bulletin of the American Meteorological Society, 80: 629-638.
|
[24] |
WU Z H, HUANG N E, 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1(1): 1-41.
|
[25] |
XUN X Y, HU Z Y, MA Y M, 2012. The dynamic plateau monsoon index and its association with general circulation anomalies[J]. Advances in Atmospheric Sciences, 29(6): 1 249-1 263. DOI:10.1007/s00376-012-1125-9.
|
[26] |
YANG J H, ZHANG Q, YUE P, et al, 2023. Characteristics of warming and humidification in the Yellow River's upper reaches and their impact on surface water resources[J]. International Journal of Climatology, 43: 7 667-7 681.
|
[27] |
YANG J H, ZHANG Q, LU G Y, et al, 2021. Climate transition from warm-dry to warm-wet in eastern northwest China[J]. Atmosphere, 12(5): 548.DOI:10.3390/atmos12050548.
|
[28] |
YU R, ZHAI P M, 2020a. More frequent and widespread persistent compound drought and heat event observed in China[J]. Scientific Reports, 10(1): 14576.DOI:10.1038/s41598-020-71312-3.
|
[29] |
YU R, ZHAI P M, 2020b. Changes in compound drought and hot extreme events in summer over populated Eastern China[J]. Weather and Climate Extremes, 30: 100295. DOI:10.1016/j.wace.2020.100295.
|
[30] |
ZHANG Q, YANG J H, DUAN X Y, et al, 2022. The eastward expansion of the climate humidification trend in northwest China and the synergistic influences on the circulation mechanism[J]. Climate Dynamics, 59(7): 2 481-2 497.
|
[31] |
ZSCHEISCHLER J, WESTRA S, VAN DEN HURK B J J M, et al, 2018. Future climate risk from compound events[J]. Nature Climate Change, 8(6): 469-477.
|