干旱气象 ›› 2025, Vol. 43 ›› Issue (2): 277-288.

• 论文 • 上一篇    

六盘山一次积层混合地形云宏微观特征观测分析

陶 涛1,3,4 ,舒志亮1,3,4 ,邓佩云1,2,3,4 ,何 佳1,3,4 ,巴音那木拉5 ,常倬林1,3,4
  

  1. 1. 中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,宁夏 银川 750002;2. 中国气象局云降水物理与人工影响天气
    重点开放实验室,北京 100081;3. 宁夏气象防灾减灾重点实验室,宁夏 银川 750002;4. 六盘山大气科学宁夏回族自治区
    野外科学观测研究站,宁夏 银川 750002;5. 内蒙古阿拉善盟气象局,内蒙古 阿拉善 750300
  • 出版日期:2025-04-30 发布日期:2025-05-13

Analysis of macro and micro characteristics of observational mixed orographic clouds over Liupan Mountain

TAO Tao1,3,4 , SHU Zhiliang1,3,4 , DENG Peiyun1,2,3,4 , HE Jia1,3,4 , BAYIN Namula5 , CHANG Zhuolin1,3,4   

  1. 1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic
    Agriculture in Arid Regions, China Meteorological Administration, Yinchuan 750002, China;
    2. Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), CMA, Beijing 100081, China;
    3. Ningxia Key Laboratory of Meteorological Disaster Prevention and Reduction, Yinchuan 750002, China;
    4. Liupan Mountains Atmospheric Science Field Observation and Research Station in Ningxia
    Hui Autonomous Region, Yinchuan 750002, China;
    5. Alxa League Meteorological Bureau of Inner Mongolia, Alxa 750300, Inner Mongolia, China
  • Online:2025-04-30 Published:2025-05-13

摘要:

六盘山是我国黄土高原—川滇生态屏障的重要组成部分,也是西北重要的水源涵养林基地。为进一步加强对六盘山区地形云宏微观特征的认识,科学开展地形云人工增雨作业,本文基于六盘山区海拔 2 842 m 高山气象站的雾滴谱仪、雨滴谱仪及毫米波云雷达等多种观测资料,研究了 2020 年8月21—23日宁夏六盘山区一次积层混合地形云的宏微观特征。结果表明,此次降水云系受地形影
响明显,云顶高度和云系垂直厚度抬升的高度与山脉平均海拔(2 162 m)相当;雨滴粒子数浓度、最大粒径、平均粒径和液态水含量在降水最强时段达到极大值,分别为 970 个·m-3、4.25 mm、1.23 mm 和1.36 g·m-3;雨滴谱分布符合 Gamma 分布,相较 M-P 分布 Gamma 分布拟合效果更优;根据云微物理量的观测数据,可将云系划分为 3 个中小尺度云区,其中云区 2 和云区 3 的宽度基本相当,均约为400 km,云区3除云雾滴粒子数浓度低于云区2外,其液态水含量、平均中值体积直径和平均有效直径均有所增加,导致降水量增加1倍左右。

关键词:

Abstract:

Liupan Mountain is an important component of the Loess Plateau-Sichuan-Yunnan ecological barrier and a key waterretaining forest base in Northwest China. To further enhance the understanding of the macro- and microphysical characteristics of orographic clouds and to support scientific weather modification operations, this study investigates a mixed stratiform orographic cloud process that occurred in the Liupan Mountain area from August 21 to 23, 2020. The analysis is based on comprehensive observations from a high-mountain meteorological station at an elevation of 2 842 m, using instruments such as a fog drop spectrometer, raindrop spectrometer, and millimeter-wave cloud radar. The results show that this precipitation system was significantly influenced by orographic effects. The increases in cloud-top height and vertical thickness were approximately equal to the average mountain elevation of 2 162 m. During the period of peak rainfall, the raindrop number concentration, maximum diameter, mean diameter, and liquid water content reached maximum values of 970 m-3, 4.25 mm, 1.23 mm, and 1.36 g·m-3, respectively. The raindrop size distribution was better represented by the Gamma distribution than by the Marshall-Palmer distribution. Based on cloud microphysical data, the cloud system was divided into three mesoscale cloud regions. The widths of regions 2 and 3 were both approximately 400 km. Compared with region 2, region 3 exhibited higher liquid water content, larger mean volume diameter, and larger mean effective diameter, resulting in approximately twice the amount of precipitation.

Key words: