干旱气象 ›› 2024, Vol. 42 ›› Issue (1): 1-10.DOI: 10.11755/j.issn.1006-7639(2024)-01-0001
王胜1(), 张强1(
), 张良1, 王兴2, 杜昊霖1, 曾剑3, 问晓梅4
收稿日期:
2023-09-25
修回日期:
2023-11-08
出版日期:
2024-02-29
发布日期:
2024-03-06
通讯作者:
张强(1965—),男,研究员,主要从事陆面过程、干旱研究。E-mail: zhangqiang@cma.gov.cn。
作者简介:
王胜(1973—),男,研究员,主要从事陆面过程研究。E-mail: wangs@iamcma.cn。
基金资助:
WANG Sheng1(), ZHANG Qiang1(
), ZHANG Liang1, WANG Xing2, DU Haoling1, ZENG Jian3, WEN Xiaomei4
Received:
2023-09-25
Revised:
2023-11-08
Online:
2024-02-29
Published:
2024-03-06
摘要:
随着全球气候变暖,自然生态系统和水资源压力不断增加,加剧了全球水资源的短缺。旱区非降水性水分(Non-precipitation Water,NPW),作为一种重要的水源,对旱区生态系统和陆面水分平衡具有显著影响。本文基于国内外非降水性水分研究现状,总结其在西北旱区的观测方法、变化特征、形成机制及对陆面水分平衡和作物的影响。在结合非降水性水分研究国际趋势的基础上,指出当前研究的不足和问题,以及未来研究的重点方向:揭示陆面非降水性水分的复杂形成机制,加强对不同气候区和下垫面非降水性水分的认知,建立专门的陆面非降水性水分观测系统,发展其在数值模式中的参数化,以及制定陆面非降水性水分开发利用的技术标准。
中图分类号:
王胜, 张强, 张良, 王兴, 杜昊霖, 曾剑, 问晓梅. 旱区陆面非降水性水分研究进展和展望[J]. 干旱气象, 2024, 42(1): 1-10.
WANG Sheng, ZHANG Qiang, ZHANG Liang, WANG Xing, DU Haoling, ZENG Jian, WEN Xiaomei. Research progress and prospect on non-precipitition water in arid and semi-arid area[J]. Journal of Arid Meteorology, 2024, 42(1): 1-10.
图1 QINRW方法判识非降水性水分各分量的流程(引自Zhang et al.,2019b)
Fig.1 Process of identifying non-precipitation water components by QINRW method(from Zhang et al.,2019b)
图2 不同下垫面露水凝结量(a,深色部分表示误差范围)和非降水性水分平均日变化特征(b)(改自Zhang et al.,2015)
Fig.2 Characteristics of dew condensation amount (a, the dark parts meaning the error range) and average daily variation of non-precipitation water content (b) on different underlying surfaces (modified from Zhang et al.,2015)
图3 可利用能量(a)、1 m风速(b)、4 m与1 m气温差(c)及相对湿度差(d)与非降水性水分形成的关系(引自Zhang et al.,2019a)
Fig.3 The relationships between available energy (a), 1 m wind speed (b), temperature (c) and relative humidity (d) difference between 4 m and 1 m height and non-precipitation water (from Zhang et al., 2019a)
图4 非降水性水分对年蒸散(a)及作物生长的贡献(b)(引自Zhang et al,2019a) (BS:孕穗期;HS:抽穗期;FS:开花期;MAT:成熟期;SD:播种期;EM:抽穗期;TS:分蘖期;JS:拔节期;WP:越冬期;GS:返青期;SJP:直立拔节期;JP:拔节期)
Fig.4 Contribution of non-precipitation water to annual evapotranspiration(a) and crop growth(b)(from Zhang et al,2019a)
[1] | 白锦鳞, 张一平, 戴万宏, 1988. 几种土壤吸附气态水的特性及其热力学函数的研究[J]. 土壤学报, 25(2): 132-138. |
[2] |
陈颖, 张冬峰, 王林, 等, 2022. RegCM4对华北区域21世纪气候变化预估研究[J]. 干旱气象, 40(1): 1-10.
DOI |
[3] | 方静, 丁永建, 2005. 荒漠绿洲边缘凝结水量及其影响因子[J]. 冰川冻土, 27(5): 755-760. |
[4] | 冯金朝, 刘立超, 肖洪浪, 等, 1998. 沙坡头地区土壤水分吸湿凝结的动态观测与理论计算[J]. 中国沙漠, 18(1): 11-15. |
[5] | 郭占荣, 韩双平, 2002. 西北干旱地区凝结水试验研究[J]. 水科学进展, 13(5): 623-628. |
[6] | 李子华, 刘端阳, 杨军, 2011. 辐射雾雾滴谱拓宽的微物理过程和宏观条件[J]. 大气科学, 35(1): 41-54. |
[7] | 刘文杰, 李红梅, 段文平, 1998. 西双版纳地区露水资源分析[J]. 自然资源学报, 13(1): 40-45. |
[8] | 闵安成, 张一平, 1996. 土壤水气吸附与解吸研究[J]. 土壤学报, 33(3): 280-286. |
[9] | 濮梅娟, 张国正, 严文莲, 等, 2008. 一次罕见的平流辐射雾过程的特征[J]. 中国科学(D辑: 地球科学), 38(6): 776-783. |
[10] | 王胜, 张强, 2011. 黄土高原半干旱区露水形成的大气物理特征研究[J]. 物理学报, 60(5): 846-853. |
[11] | 王兴, 张强, 王胜, 等, 2021. 陆面露水凝结预估模型研究进展及面临的主要科学问题与展望[J]. 干旱气象, 39(1): 159-167. |
[12] | 问晓梅, 张强, 王胜, 等, 2008. 陆面露水特征及生态气候效应的研究进展[J]. 干旱气象, 26(4): 5-11. |
[13] | 谢伏瞻, 2019. 应对气候变化报告(2019)[M]. 北京: 社会科学文献出版社:4-10. |
[14] | 许秀娟, 商鸿生, 井金学, 1994. 小麦田间结露研究[J]. 西北农业大学学报, 22(4): 38-42. |
[15] | 张静, 张元明, 周晓兵, 等, 2009. 生物结皮影响下沙漠土壤表面凝结水的形成与变化特征[J]. 生态学报, 29(12): 6 600-6 608. |
[16] | 张强, 王蓉, 岳平, 等, 2017. 复杂条件陆-气相互作用研究领域有关科学问题探讨[J]. 气象学报, 75(1): 39-56. |
[17] | 张强, 王胜, 曾剑, 2010a. 论干旱区非降水性陆面液态水分分量及其与土壤水分的关系[J]. 干旱区研究, 27(3): 392-400. |
[18] | 张强, 王胜, 问晓梅, 等, 2012. 黄土高原陆面水分的凝结现象及收支特征试验研究[J]. 气象学报, 70(1): 128-135. |
[19] | 张强, 王胜, 2007. 关于干旱和半干旱区陆面水分过程的研究[J]. 干旱气象, 25(2): 1-4. |
[20] | 张强, 问晓梅, 王胜, 等, 2010b. 关于陆面降露水测量方法及其开发利用研究[J]. 高原气象, 29(4): 1 085-1 092. |
[21] | 张翔, 韦燕芳, 李思宇, 等, 2021. 从干旱灾害到干旱灾害链: 进展与挑战[J]. 干旱气象, 39(6): 873-883. |
[22] | 张亚春, 马耀明, 马伟强, 等, 2021. 青藏高原不同下垫面蒸散量及其与气象因子的相关性[J]. 干旱气象, 39(3): 366-373. |
[23] | 郑新军, 王勤学, 刘冉, 等, 2009. 准噶尔盆地东南缘盐生荒漠生态系统的凝结水输入[J]. 自然科学进展, 19(11): 1 175-1 186. |
[24] |
庄艳丽, 赵文智, 2008. 干旱区凝结水研究进展[J]. 地球科学进展, 23(1): 31-38.
DOI |
[25] | AGAM N, BERLINER P R, 2004. Diurnal water content changes in the bare soil of a coastal desert[J]. Journal of Hydrometeorology, 5(5): 922-933. |
[26] | AGAM N, BERLINER P R, 2006. Dew formation and water vapor adsorption in semi-arid environments: A review[J]. Journal of Arid Environments, 65(4): 572-590. |
[27] | ALLEN R G, PEREIRA L S, HOWELL T A, et al, 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy[J]. Agricultural Water Management, 98(6): 899-920. |
[28] | BEYSENS D. 1995. The formation of dew[J]. Atmospheric Research, 39(1/2/3): 215-237. |
[29] | BLONQUIST J M, TANNER B D, BUGBEE B, 2009. Evaluation of measurement accuracy and comparison of two new and three traditional net radiometers[J]. Agricultural and Forest Meteorology, 149(10): 1 709-1 721. |
[30] | BOTT A, TRAUTMANN T, 2002. PAFOG—a new efficient forecast model of radiation fog and low-level stratiform clouds[J]. Atmospheric Research, 64(1/2/3/4): 191-203. |
[31] |
DAWSON T E, 1998. Fog in the California redwood forest: ecosystem inputs and use by plants[J]. Oecologia, 117(4): 476-485.
DOI PMID |
[32] | DUVDEVANI S, 1947. An optical method of dew estimation[J]. Quarterly Journal of the Royal Meteorological Society, 73(317/318): 282-296. |
[33] | FERNANDO H J S, GULTEPE I, DORMAN C, et al, 2021. C-FOG: Life of coastal fog[J]. Bulletin of the American Meteorological Society, 102(2): E244-E272. |
[34] | GARRATT J R, SEGAL M, 1988. On the contribution of atmospheric moisture to dew formation[J]. Boundary-Layer Meteorology, 45(3): 209-236. |
[35] | GERBER H, 1991. Supersaturation and droplet spectral evolution in fog[J]. Journal of the Atmospheric Sciences, 48(24): 2 569-2 588. |
[36] | GULTEPE I, TARDIF R, MICHAELIDES S C, et al, 2007. Fog research: a review of past achievements and future perspectives[J]. Pure and Applied Geophysics, 164(6): 1 121-1 159. |
[37] | HAO X M, LI C, GUO B, et al, 2012. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China[J]. Journal of Hydrology, 472/473: 90-98. |
[38] | HAEFFELIN M, DUPONT J C, BOYOUK N, et al, 2013. A comparative study of radiation fog and quasi-fog formation processes during the Paris Fog field experiment 2007[J]. Pure and Applied Geophysics, 170(12): 2 283-2 303. |
[39] | HORNBUCKLE B K, ENGLAND A W, ANDERSON M C, et al, 2006. The effect of free water in a maize canopy on microwave emission at 1.4 GHz[J]. Agricultural and Forest Meteorology, 138(1/2/3/4): 180-191. |
[40] | HUDSON J G, 1980. Relationship between fog condensation nuclei and fog microstructure[J]. Journal of the Atmospheric Sciences, 37(8): 1 854-1 867. |
[41] | HUTLEY L B, DOLEY D, YATES D J, et al, 1997. Water balance of an Australian subtropical rainforest at altitude: The ecological and physiological significance of intercepted cloud and fog[J]. Australian Journal of Botany, 45(2): 311. DOI: 10.1071/bt96014. |
[42] | INGRAHAM N L, MATTHEWS R A, 1995. The importance of fog-drip water to vegetation: point Reyes Peninsula, California[J]. Journal of Hydrology, 164(1/2/3/4): 269-285. |
[43] | IPCC, 2023. Climate Change 2023: Synthesis Report[R]. Geneva, Switzerland: 35-115. DOI: 10.59327/IPCC/AR6-9789291691647 |
[44] | JACKSON T J, MOY L, 1999. Dew effects on passive microwave observations of land surfaces[J]. Remote Sensing of Environment, 70(2): 129-137. |
[45] | JACOBS A F G, HEUSINKVELD B G, WICHINK KRUIT R J, et al, 2006. Contribution of dew to the water budget of a grassland area in the Netherlands[J]. Water Resources Research, 42(3): 3 415-3 422. |
[46] | JACOBS A F G, HEUSINKVELD B G, BERKOWICZ S M, 2008. Passive dew collection in a grassland area, The Netherlands[J]. Atmospheric Research, 87(3/4): 377-385. |
[47] | KABELA E D, HORNBUCKLE B K, COSH M H, et al, 2009. Dew frequency, duration, amount, and distribution in corn and soybean during SMEX05[J]. Agricultural and Forest Meteorology, 149(1): 11-24. |
[48] | KASEKE K F, WANG L X, SEELY M K, 2017. Nonrainfall water origins and formation mechanisms[J]. Science Advances, 3(3), e1603131. DOI: 10.1126/sciadv.1603131. |
[49] | KATATA G, NAGAI H, UEDA H, et al, 2007. Development of a land surface model including evaporation and adsorption processes in the soil for the land-air exchange in arid regions[J]. Journal of Hydrometeorology, 8(6): 1 307-1 324. |
[50] | KIDRON G J, 2005. Angle and aspect dependent dew and fog precipitation in the Negev Desert[J]. Journal of Hydrology, 301(1/2/3/4): 66-74. |
[51] | KIDRON G J, 2000. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highlands, Israel[J]. Atmospheric Research, 55(3/4): 257-270. |
[52] | KOSMAS C, DANALATOS N G, POESEN J, et al, 1998. The effect of water vapour adsorption on soil moisture content under Mediterranean climatic conditions[J]. Agricultural Water Management, 36(2): 157-168. |
[53] | KOSMAS C, MARATHIANOU M, GERONTIDIS S, et al, 2001. Parameters affecting water vapor adsorption by the soil under semi-arid climatic conditions[J]. Agricultural Water Management, 48(1): 61-78. |
[54] | LI X Y, 2002. Effects of gravel and sand mulches on dew deposition in the semiarid region of China[J]. Journal of Hydrology, 260(1/2/3/4): 151-160. |
[55] | LIU L C, LI S Z, DUAN Z H, et al, 2006. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, Northwest China[J]. Journal of Hydrology, 328(1/2): 331-337. |
[56] |
LIU W J, ZHANG Y P, HONG M L, et al, 2005. Fog drip and its relation to groundwater in the tropical seasonal rain forest of Xishuangbanna, Southwest China: a preliminary study[J]. Water Research, 39(5): 787-794.
PMID |
[57] | MALEK E, MCCURDY G, GILES B, 1999. Dew contribution to the annual water balances in semi-arid desert valleys[J]. Journal of Arid Environments, 42(2): 71-80. |
[58] | MINNIS P, MAYOR S, 1997. Asymmetry in the diurnal variation of surface albedo[J]. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 879-891. |
[59] | MONTEITH J L, 1957. Dew[J]. Quarterly Journal of the Royal Meteorological Society, 83(357): 322-341. |
[60] | MORO M J, WERE A, VILLAGARCÍA L, et al, 2007. Dew measurement by eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain[J]. Journal of Hydrology, 335(3/4): 295-302. |
[61] | MUSELLI M, BEYSENS D, MILETA M, et al, 2009. Dew and rain water collection in the Dalmatian Coast, Croatia[J]. Atmospheric Research, 92(4): 455-463. |
[62] | MUSELLI M, BEYSENS D, MILIMOUK I, 2006. A comparative study of two large radiative dew water condensers[J]. Journal of Arid Environments, 64(1): 54-76. |
[63] | NINARI N, BERLINER P R, 2002. The role of dew in the water and heat balance of bare loess soil in the Negev Desert: quantifying the actual dew deposition on the soil surface[J]. Atmospheric Research, 64(1/2/3/4): 323-334. |
[64] | NICKERSON E C, RICHARD E, ROSSET R, et al, 1986. The numerical simulation of clouds, rains and airflow over the Vosges and black forest mountains: a meso-β model with parameterized microphysics[J]. Monthly Weather Review, 114(2): 398-414. |
[65] | ORCHISTON H D, 1953. Adsorption of water vapor[J]. Soil Science, 76(6): 453-466. |
[66] | PAULUS S J, EL-MADANY T S, ORTH R, et al, 2022. Resolving seasonal and diel dynamics of non-precipitation water inputs in a Mediterranean ecosystem using lysimeters[J]. Hydrology and Earth System Sciences, 26(23): 6 263-6 287. |
[67] | ROACH W T, 1995. Back to basics: fog: part 2—the formation and dissipation of land fog[J]. Weather, 50(1): 7-11. |
[68] | SHI C E, WANG L, ZHANG H, et al, 2012. Fog simulations based on multi-model system: a feasibility study[J]. Pure and Applied Geophysics, 169(5): 941-960. |
[69] | SCHELLER E, 2001. Amino acids in dew-origin and seasonal variation[J]. Atmospheric Environment, 35(12): 2 179-2 192. |
[70] |
SEELY M K, 1979. Irregular fog as a water source for desert dune beetles[J]. Oecologia, 42(2): 213-227.
DOI PMID |
[71] | TAYLOR G I, 1917. The formation of fog and mist[J]. Quarterly Journal of the Royal Meteorological Society, 43(183): 241-268. |
[72] | THOMA C, SCHNEIDER W, MASBOU M, et al, 2012. Integration of local observations into the one dimensional fog model PAFOG[J]. Pure and Applied Geophysics, 169(5): 881-893. |
[73] | UCLÉS O, VILLAGARCÍA L, CANTÓN Y, et al, 2015. Non-precipitation water inputs are controlled by aspect in a semiarid ecosystem[J]. Journal of Arid Environments, 113: 43-50. |
[74] | UCLÉS O, VILLAGARCÍA L, MORO M J, et al, 2014. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem[J]. Hydrological Processes, 28(4): 2 271-2 280. |
[75] | UCLÉS O, VILLAGARCÍA L, CANTÓN Y, et al, 2016. Partitioning of non rainfall water input regulated by soil cover type[J]. CATENA, 139: 265-270. |
[76] | WHITEMAN C D, DE WEKKER S F J, HAIDEN T, 2007. Effect of dewfall and frostfall on nighttime cooling in a small, closed basin[J]. Journal of Applied Meteorology and Climatology, 46(1): 3-13. |
[77] | WILSON T B, BLAND W L, NORMAN J M, 1999. Measurement and simulation of dew accumulation and drying in a potato canopy[J]. Agricultural and Forest Meteorology, 93(2): 111-119. |
[78] | YE Y H, ZHOU K, SONG L Y, et al, 2007. Dew amounts and its correlations with meteorological factors in urban landscapes of Guangzhou, China[J]. Atmospheric Research, 86(1): 21-29. |
[79] | YOKOYAMA G, YASUTAKE D, WANG W Z, et al, 2021. Limiting factor of dew formation changes seasonally in a semiarid crop field of Northwest China[J]. Agricultural and Forest Meteorology, 311, 108705. DOI: 10.1016/j.agrformet.2021.108705. |
[80] | ZHANG J, ZHANG Y M, DOWNING A, et al, 2009. The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China[J]. Journal of Hydrology, 379(3/4): 220-228. |
[81] | ZHANG Q, WANG S, YUE P, et al, 2019a. Variation characteristics of non-precipitation water and its contribution to crop water requirements in China’s summer monsoon transition zone[J]. Journal of Hydrology, 578, 124039. DOI: 10.1016/j.jhydrol.2019.124039. |
[82] | ZHANG Q, WANG S, YUE P, et al, 2019b. A measurement, quantitative identification and estimation method (QINRW) of non-precipitation water component by lysimeter[J]. MethodsX, 6: 2 873-2 881. |
[83] | ZHANG Q, ZENG J, YUE P, et al, 2020. On the land-atmosphere interaction in the summer monsoon transition zone in East Asia[J]. Theoretical and Applied Climatology, 141(3): 1 165-1 180. |
[84] | ZHANG Q, WANG S, WANG S S, et al, 2016. Influence factors and variation characteristics of water vapor absorption by soil in semi-arid region[J]. Science China Earth Sciences, 59(11): 2 240-2 251. |
[85] | ZHANG Q, WANG S, WEN X M, et al, 2011. Experimental study of the imbalance of water budget over the Loess Plateau of China[J]. Acta Meteorologica Sinica, 25(6): 765-773. |
[86] | ZHANG Q, WANG S, YANG F L, et al, 2015. Characteristics of dew formation and distribution, and its contribution to the surface water budget in a semi-arid region in China[J]. Boundary-Layer Meteorology, 154(2): 317-331. |
[87] | ZHENG Y M, BAI H, HUANG Z B, et al, 2010. Directional water collection on wetted spider silk[J]. Nature, 463(7281): 640-643. |
[1] | 王兴, 张强, 王胜, 王帆. 陆面露水凝结预估模型研究进展及面临的主要科学问题与展望[J]. 干旱气象, 2021, 39(1): 159-167. |
[2] | 张 强, 陈丽华, 问晓梅, 王 胜. 陆面露水资源开发利用技术初探[J]. J4, 2008, 26(4): 1-4. |
[3] | 问晓梅, 张强, 王胜, 张杰. 陆面露水特征及生态气候效应的研究进展[J]. J4, 2008, 26(4): 5-11. |
[4] | 张强, 王胜. 关于干旱和半干旱区陆面水分过程的研究[J]. J4, 2007, 25(2): 1-4. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: