干旱气象 ›› 2025, Vol. 43 ›› Issue (6): 953-966.DOI: 10.11755/j.issn.1006-7639-2025-06-0953
收稿日期:2025-07-08
修回日期:2025-09-30
出版日期:2025-12-31
发布日期:2026-01-19
通讯作者:
王颖(1975—),女,吉林四平人,教授,主要从事空气污染数值模拟、边界层气象特征及生态环境保护研究。E-mail: yingwang@lzu.edu.cn。作者简介:周燕艳(2001—),女,广西南宁人,硕士生,主要从事陆气相互作用研究。E-mail: zhyanyan2023@lzu.edu.cn。
ZHOU Yanyan1(
), WANG Ying1,2(
), WEI Ruirui1, ZHAO Tianyi1
Received:2025-07-08
Revised:2025-09-30
Online:2025-12-31
Published:2026-01-19
摘要:
积雪对地表能量过程的复杂影响是冬季复杂地形区数值模拟的关键不确定源,亟待深入研究。利用WRF v4.3模式,针对兰州新区2014年有雪期(2月18—26日)与无雪期(1月11—19日)开展模拟对比试验,基于4座测风塔观测数据,系统评估了SLAB、Pleim-Xiu、RUC和NoahMP 4种陆面方案对近地面气象要素的模拟性能,揭示了积雪对模拟精度的影响及其对陆面方案的敏感性。结果表明,无雪期模拟效果良好:气温模拟相关系数(R)为0.80~0.97,归一化中心均方根误差(Normalized Centered Root Mean Square Errors,NCRMSE)为0.27~0.60;风速模拟R为0.46~0.82,绝对偏差普遍低于0.5 m·s-1,且能较好地再现坡风环流特征。而在积雪期,模拟精度显著下降:约半数方案气温R低于0.80,最大冷偏差超过5.00 ℃,NCRMSE升至0.38~0.79;风速NCRMSE增至0.77~2.52,风向频率误差可达无雪期的2倍。泰勒图分析进一步表明,积雪增强了模拟结果对陆面方案的敏感性,有雪期各方案归一化标准差的离散性显著大于无雪期。在4种方案中,NoahMP在积雪期表现最优,其气温R稳定在0.9左右,冷偏差最小,且NCRMSE多低于0.5。准确表征积雪过程对提升冬季复杂地形区的气象模拟能力具有重要意义。
中图分类号:
周燕艳, 王颖, 魏瑞瑞, 赵天一. WRF模式的陆面过程方案对积雪的敏感性分析[J]. 干旱气象, 2025, 43(6): 953-966.
ZHOU Yanyan, WANG Ying, WEI Ruirui, ZHAO Tianyi. Sensitivity of land surface schemes to snow cover in the WRF model[J]. Journal of Arid Meteorology, 2025, 43(6): 953-966.
图1 WRF模式四重嵌套模拟区域(a)和D04地形高度(填色,单位:m)与兰州新区4座测风塔(黑色圆点)分布(b)
Fig.1 WRF four-domain nested grid configuration (a) and terrain elevation (the color shaded, Unit: m) and locations of four meteorological towers (black dots) in the innermost D04 (b)
图2 2014年2月19日08:00积雪覆盖期(a)与2014年1月13日08:00无雪期(b)500 hPa位势高度(蓝色等值线,单位:dagpm)与温度(红色等值线,单位:℃)分布 (红色星形为兰州新区位置)
Fig.2 The 500 hPa geopotential height (blue contour lines, Unit: dagpm) and temperature (red contour lines, Unit: ℃) at 08:00 on 19 February 2014 during snow-covered period (a) and 08:00 on 13 January 2014 during snow-free period (b) (The red star represents the location of Lanzhou New Area)
图3 2014年2月19日08:00积雪覆盖(a)与2014年1月13日08:00无积雪(b)D04区域MODIS遥感影像
Fig.3 MODIS true-color images showing the D04 region with snow cover (a) at 08:00 on 19 February 2014 and without snow cover at 08:00 on 13 January 2014 (b)
图4 积雪覆盖期各陆面方案T2及T70模拟值与观测值的散点图 (*表示通过置信水平为95%的显著性检验,下划线数字为最优值。下同)
Fig.4 Scatter plot of T2 and T70 from various land surface schemes against observations during snow-covered period (* indicates significance at the 95% confidence level, the underlined numbers represent the optimal values. The same as below)
图5 积雪覆盖期WS10、WS70各测风塔观测值及不同方案模拟值的日变化
Fig.5 Diurnal variations of WS10 and WS70 observed and simulated by four land surface schemes at four meteorological towers during snow-covered period
图6 积雪覆盖期各测风塔10 m与70 m高度观测与不同方案模拟的风玫瑰图
Fig.6 Wind roses diagrams of the 10-m and 70-m observations from each meteorological tower, together with four land surface schemes during snow-covered period
图8 无雪期WS10、WS70各测风塔观测值及不同方案模拟值的日变化
Fig.8 Diurnal variations of WS10 and WS70 observed and simulated by four land surface schemes at four meteorological towers during snow-free period
图9 无雪期各测风塔10 m与70 m高度观测与不同方案模拟的风玫瑰图
Fig.9 Wind roses diagrams of the 10-m and 70-m observations from each meteorological tower, together with four meteorological towers during snow-free period
图10 不同陆面方案各测风塔有雪、无雪条件下T2、T70、WS10及WS70归一化泰勒图
Fig.10 Normalized Taylor diagrams for T2, T70, WS10, and WS70 from four land surface schemes at four meteorological towers during snow-covered and snow-free periods
| [1] | 陈海山, 杜新观, 孙悦, 2022. 陆面过程与天气研究[J]. 地学前缘, 29(5):382-400. |
| [2] | 姜琪, 罗斯琼, 李明, 2022. 不同初始场及陆面方案对青藏高原中东部积雪消融过程的模拟研究[J]. 高原气象, 41(2):430-443. |
| [3] | 李文静, 罗斯琼, 郝晓华, 等, 2021. 青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J]. 高原气象, 40(3):455-471. |
| [4] | 刘晓东, 1989. 冰雪变化对大气环流和天气气候的影响[J]. 地球科学进展, 4(6):53-58. |
| [5] | 卢冰, 王薇, 杨扬, 等, 2019. WRF中土壤图及参数表的更新对华北夏季预报的影响研究[J]. 气象学报, 77(6):1028-1 040. |
| [6] | 鲁峻岑, 张小玲, 王安怡, 等, 2023. 冬季局地环流对成都地区大气污染的影响[J]. 高原山地气象研究, 43(4):91-100. |
| [7] | 乔娟, 张强, 张杰, 2008. 非均匀下垫面陆面过程参数化问题研究进展[J]. 干旱气象, 26(1):73-77. |
| [8] | 任余龙, 张铁军, 柳媛普, 等, 2020. 夏季风过渡区下垫面非均匀性对一次暴雨影响的数值模拟[J]. 干旱气象, 38(5):755-763. |
| [9] | 孙昭萱, 张强, 王胜, 2009. 土壤水热耦合模型研究进展[J]. 干旱气象, 27(4):373-380. |
| [10] | 王升第, 曹斌, 郝建盛, 等, 2023. 新疆季节性积雪对地表温度的影响[J]. 冰川冻土, 45(2):435-445. |
| [11] | 温晓培, 吴炜, 李昌义, 等, 2022. 土地利用资料的更新对四川盆地高温天气数值模拟的影响[J]. 干旱气象, 40(5):868-878. |
| [12] | 吴统文, 钱正安, 宋敏红, 2004. CCM3模式中LSM积雪方案的改进研究 (Ⅰ):修改方案介绍及其单点试验[J]. 高原气象, 23(4):444-452. |
| [13] | 张海宏, 肖建设, 陈奇, 等, 2019. 青海省甘德两次降雪过程的微气象特征分析[J]. 气象, 45(8):1093-1 103. |
| [14] | 张强, 王蓉, 岳平, 等, 2017. 复杂条件陆-气相互作用研究领域有关科学问题探讨[J]. 气象学报, 75(1):39-56. |
| [15] | 张亚莉, 王清平, 万瑜, 等, 2024. 乌鲁木齐机场2021年首场强浓雾特征及成因分析[J]. 沙漠与绿洲气象, 18(4):83-90. |
| [16] | 赵采玲, 张铁军, 王玮, 等, 2018. 不同土地利用数据对中国西北地区风速模拟的影响[J]. 干旱气象, 36(3):397-404. |
| [17] | BENNETT N D, CROKE B F W, GUARISO G, et al, 2013. Characterising performance of environmental models[J]. Environmental Modelling & Software, 40: 1-20. |
| [18] | CAO X, ZHANG G, CHEN Y L, et al, 2024. Optimization of snow-related processes in Noah-MP land surface model over the mid-latitudes of Asian region[J]. Atmospheric Research, 311: 107711. DOI: 10.1016/j.atmosres.2024.107711. |
| [19] | CLINE D W, 1997. Effect of seasonality of snow accumulation and melt on snow surface energy exchanges at a continental alpine site[J]. Journal of Applied Meteorology and Climatology, 36(1): 32-51. |
| [20] | DE FOY B, MOLINA L T, MOLINA M J, 2006. Satellite-derived land surface parameters for mesoscale modelling of the Mexico City basin[J]. Atmospheric Chemistry and Physics, 6(5): 1 315-1 330. |
| [21] | DI Z H, ZHANG S L, QUAN J P, et al, 2023. Performance of seven land surface schemes in the WRFv4.3 model for simulating precipitation in the record-breaking Meiyu season over the Yangtze-Huaihe River valley in China[J]. GeoHealth, 7(3): e2022GH000757. DOI: 10.1029/2022GH000757. |
| [22] | DUDHIA J, 1996. A Multi-Layer Soil Temperature Model for MM5[C]// Proceedings of the Sixth PSU/NCAR Mesoscale Model Users’ Workshop. Boulder: National Center for Atmospheric Research: 22-24. |
| [23] | GILLIAM R C, PLEIM J E, 2010. Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW[J]. Journal of Applied Meteorology and Climatology, 49(4): 760-774. |
| [24] | MENG X H, LÜ S H, ZHANG T T, et al, 2009. Numerical simulations of the atmospheric and land conditions over the Jinta oasis in northwestern China with satellite-derived land surface parameters[J]. Journal of Geophysical Research: Atmospheres, 114(D6). DOI: 10.1029/2008JD010360. |
| [25] | MOTT R, DANIELS M, LEHNING M, 2015. Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover[J]. Journal of Hydrometeorology, 16(3): 1 315-1 340. |
| [26] | MOTT R, SCHLÖGL S, DIRKS L, et al, 2017. Impact of extreme land surface heterogeneity on micrometeorology over spring snow cover[J]. Journal of Hydrometeorology, 18(10): 2 705-2 722. |
| [27] | NIU G Y, YANG Z L, 2007. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins[J]. Journal of Geophysical Research: Atmospheres, 112(D21): 2007JD008674. DOI: 10.1029/2007JD008674. |
| [28] | NIU G Y, YANG Z L, MITCHELL K E, et al, 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements[J]. Journal of Geophysical Research: Atmospheres, 116(D12): D12109. DOI:10.1029/2010JD015140. |
| [29] | PARRA R, 2023. Assessment of land surface schemes from the WRF-chem for atmospheric modeling in the Andean Region of Ecuador[J]. Atmosphere, 14(3): 508. DOI:10.3390/atmos14030508. |
| [30] | POWERS J G, KLEMP J B, SKAMAROCK W C, et al, 2017. The weather research and forecasting model: Overview, system efforts, and future directions[J]. Bulletin of the American Meteorological Society, 98(8): 1 717-1 737. |
| [31] | ROMÁN-CASCÓN C, LOTHON M, LOHOU F, et al, 2021. Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3)[J]. Geoscientific Model Development, 14(6): 3 939-3 967. |
| [32] | SCHMIDLI J, BÖING S, FUHRER O, 2018. Accuracy of simulated diurnal valley winds in the Swiss Alps: Influence of grid resolution, topography filtering, and land surface datasets[J]. Atmosphere, 9(5): 196. DOI:10.3390/atmos9050196. |
| [33] | SEGAL M, GARRATT J R, PIELKE R A, et al, 1991. Scaling and numerical model evaluation of snow-cover effects on the generation and modification of daytime mesoscale circulations[J]. Journal of the Atmospheric Sciences, 48(8): 1 024-1 042. |
| [34] | SHANGGUAN W, DAI Y J, DUAN Q Y, et al, 2014. A global soil data set for earth system modeling[J]. Journal of Advances in Modeling Earth Systems, 6(1): 249-263. |
| [35] | SKAMAROCK W C, KLEMP J B, DUDHIA J, et al, 2019. A description of the advanced research WRF model version 4[R]. Boulder: National Center for Atmospheric Research, NCAR/TN-556+STR. |
| [36] | SMIRNOVA T G, BROWN J M, BENJAMIN S G, et al, 2016. Modifications to the rapid update cycle land surface model (RUC LSM) available in the weather research and forecasting (WRF) model[J]. Monthly Weather Review, 144(5): 1 851-1 865. |
| [37] | STULL R B, 1988. Mean boundary layer characteristics[M]// An introduction to boundary layer meteorology. Dordrecht: Springer Netherlands: 1-27. |
| [38] | SUN S, SHI C X, LIANG X, et al, 2023. The evaluation of snow depth simulated by different land surface models in China based on station observations[J]. Sustainability, 15(14): 11284. DOI: 10.3390/su151411284. |
| [39] | TAYLOR K E, 2001. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 106(D7): 7 183-7 192. |
| [40] | WALSH J E, 1984. Snow cover and atmospheric variability: Changes in the snow covering the earth’s surface affect both daily weather and long-term climate[J]. American Scientist, 72(1): 50-57. |
| [41] | XIA G, SMIRNOVA T G, TURNER D D, et al, 2023. Sensitivity of near-surface variables in the RUC land surface model in the weather research and forecasting model[R]. Golden, CO: National Renewable Energy Laboratory. |
| [42] | ZHANG B, XIONG W, MA M Y, et al, 2022. Super-resolution reconstruction of a 3 arc-second global DEM dataset[J]. Science Bulletin, 67(24): 2 526-2 530. |
| [43] | ZHANG H L, PU Z X, ZHANG X B, 2013. Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain[J]. Weather and Forecasting, 28(3): 893-914. |
| [44] | ZHANG T J, 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 43(4): 2004RG000157. DOI:10.1029/2004RG000157. |
| [45] | ZHANG X, LIU L Y, CHEN X D, et al, 2021. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 13(6): 2 753-2 776. |
| [46] | ZHANG Y, YAN D D, WEN X H, et al, 2020. Comparative analysis of the meteorological elements simulated by different land surface process schemes in the WRF model in the Yellow River source region[J]. Theoretical and Applied Climatology, 139(1): 145-162. |
| [1] | 何沛霖, 吴迪, 王柯化, 李克南. 东南沿海一次近云区湍流事件的数值模拟与产生机制研究[J]. 干旱气象, 2024, 42(6): 922-933. |
| [2] | 孙明燕, 张述文. 边界层湍流垂直混合强度对局地热对流模拟影响的个例研究[J]. 干旱气象, 2023, 41(2): 290-300. |
| [3] | 马思敏, 穆建华, 舒志亮, 孙艳桥, 邓佩云, 周楠. 六盘山区一次典型暴雨过程的地形敏感性模拟试验[J]. 干旱气象, 2022, 40(3): 457-468. |
| [4] | 李涛, 陈杰, 汪方, 韩锐. 一种基于神经网络的中国区域夏季降水预测订正算法[J]. 干旱气象, 2022, 40(2): 308-316. |
| [5] | 王溪雯, 张飞民, 王芝兰, 杨凯, 王澄海. 青藏高原西部一次高原涡生成的数值模拟研究[J]. 干旱气象, 2021, 39(1): 54-64. |
| [6] | 董 甫, 张 玲, 张海鹏, 李 佳, 宋柳贤. 基于WRF模式的强天气过程集合预报综述[J]. 干旱气象, 2020, 38(5): 699-708. |
| [7] | 郑婧, 陈娟, 徐星生, 许彬. 一次低空急流加强下的暴雨过程成因分析[J]. 干旱气象, 2020, 38(03): 411-422. |
| [8] | 吴琼, 徐卫民. 湖陆山地复杂地形下近地层风速预报研究[J]. 干旱气象, 2019, 37(3): 384-. |
| [9] | 沈晓燕1,2,颜玉倩1,2,肖宏斌1,2,权晨1,2. WRF模式不同参数化方案组合对青海气温、降水及风速模拟的影响[J]. 干旱气象, 2018, 36(3): 423-. |
| [10] | 于丽娟1,尹承美1,林应超2,何建军3. 中国区域近地面风速动力降尺度研究[J]. 干旱气象, 2017, 35(1): 23-28. |
| [11] | 杨吉萍1,胡兴才1,崔志强2. 甘肃民勤“4.24”沙尘暴过程的数值模拟分析[J]. 干旱气象, 2016, 34(4): 718-724. |
| [12] | 张政泰,林明宇,亓鹏,陈圣哲,王澄海. 西南涡发生发展机制中热力强迫作用的数值试验[J]. 干旱气象, 2016, 34(3): 533-539. |
| [13] | 易翔,曾新民,王宁,王明,周骁,汪彪. WRF模式中土壤湿度对位势高度模拟影响的敏感性分析[J]. 干旱气象, 2016, 34(1): 113-124. |
| [14] | 赵玮,熊亚军,郭金兰. 一种新型雷电潜势预报指数的构建与试验[J]. 干旱气象, 2016, 34(1): 173-180. |
| [15] | 马思敏1,2,刘晓莉1,杨侃3,张宏元2,朱 昱1. 宁夏固原市一次对流性天气的数值模拟[J]. 干旱气象, 2015, 33(2): 278-290. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
甘公网安备62010002000425号
陇ICP备17000949号-2
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: