干旱气象 ›› 2025, Vol. 43 ›› Issue (2): 300-307.DOI: 10.11755/j.issn.1006-7639-2025-02-0300

• 论文 • 上一篇    下一篇

基于葵花8号卫星影像的内蒙古地区积雪判识研究

李静1(), 魏薇2(), 姚锦桃1, 陈琳1   

  1. 1.内蒙古自治区包头市气象局,内蒙古 包头 014030
    2.内蒙古自治区呼和浩特市气象局,内蒙古 呼和浩特 010000
  • 收稿日期:2023-07-03 修回日期:2023-12-14 出版日期:2025-04-30 发布日期:2025-05-13
  • 通讯作者: 魏薇(1989—),女,内蒙古乌兰察布人,硕士,工程师,主要从事天气预报相关研究。E-mail:342276035@qq.com。
  • 作者简介:李静(1993—),女,内蒙古包头市人,硕士,工程师,主要从事地面观测及卫星遥感研究。E-mail:799407752@qq.com
  • 基金资助:
    包头市气象局科技创新项目(BTQX202216)

Research on snow identification in Inner Mongolia based on Himawari-8 satellite images

LI Jing1(), WEI Wei2(), YAO Jintao1, CHEN Lin1   

  1. 1. Baotou Meteorological Bureau of Inner Mongolia, Baotou 014030, Inner Mongolia, China
    2. Hohhot Meteorological Bureau of Inner Mongolia, Hohhot 010000, China
  • Received:2023-07-03 Revised:2023-12-14 Online:2025-04-30 Published:2025-05-13

摘要: 内蒙古是我国重要的季节性积雪区之一,积雪判识和雪深反演对农业生产、生态评估以及研究春汛、积雪灾害等有重要意义。为了提高本地积雪判识精度,本文提出一种基于归一化差分雪指数(Normalized Difference Snow Index,NDSI)的直接比较积雪判识方法,即应用葵花8号卫星的待判识积雪图和当年秋季无雪底图的NDSI做差运算进行积雪判识,并与日常业务使用的积雪判识方法进行比较。结果表明:日常使用的积雪决策树算法(Snow Mapping,SNOMAP)存在漏判部分薄雪像元现象,积雪分数(Fractional Snow Cover,FSC)算法在积雪判识时会受到水体影响最终影响精度。内蒙古地区的非林区,NDSI直接比较判识法相较SNOMAP和FSC算法判识精度分别提升3.88%、0.52%,NDSI直接比较法和FSC算法在非林区的判识精度相差很小;林区,NDSI直接比较法相较FSC算法判识精度明显提升,同时错判误差降低,说明NDSI直接比较法更适用于内蒙古地区林区的积雪判识。

关键词: 积雪判识, 遥感, 葵花8号卫星, NDSI直接比较法

Abstract:

Inner Mongolia is one of significant seasonal snow-covered regions in China. Snow identification and snow depth inversion are crucial for agricultural production, ecological assessment, and research on spring floods and snow-related disasters. In order to improve the accuracy of local snow identification, a direct comparison snow identification method based on Normalized Difference Snow Index (NDSI) is proposed in this paper, the method involves applying the NDSI difference operation between the snow map to be identified from the Himawari-8 satellite images and the snow-free base map from the current autumn to identify snow, and it is compared with the snow identification methods used in routine business. The results indicate that the Snow Mapping (SNOMAP) algorithm, based on the Normalized Difference Vegetation Index (NDVI), tends to miss some thin snow pixels, while the Fractional Snow Cover (FSC) algorithm can be affected by water bodies in snow identification and ultimately affect its accuracy. In the non-forest areas of Inner Mongolia, the accuracy of NDSI direct comparison was 3.88% higher than SNOMAP and 0.52% higher than FSC. The difference between the accuracy of NDSI direct comparison and FSC in non-forest areas was small. In forest areas, compared with FSC algorithm, NDSI direct comparison method significantly improved the identification accuracy, while the error rate decreased, indicating that NDSI direct comparison method is more suitable for snow identification in forest areas of Inner Mongolia.

Key words: snow identification, remote sensing, Himawari-8 satellite, NDSI direct comparison snow identification method

中图分类号: