干旱气象 ›› 2024, Vol. 42 ›› Issue (6): 987-993.DOI: 10.11755/j.issn.1006-7639-2024-06-0987

• 技术报告 • 上一篇    

冬季武汉天兴洲大桥桥面温度特征及其预报模型研究

贺莉微1(), 陈英英1(), 翟红楠2, 王雅新1, 鲁静1   

  1. 1.湖北省气象服务中心,湖北 武汉 430074
    2.武汉市公共气象服务中心,湖北 武汉 430040
  • 收稿日期:2023-10-27 修回日期:2024-07-08 出版日期:2024-12-31 发布日期:2025-01-15
  • 通讯作者: 陈英英(1982—),女,山东威海人,高级工程师,主要从事应用气象研究。E-mail:56912535@qq.com
  • 作者简介:贺莉微(1988—),女,陕西绥德人,高级工程师,主要从事应用气象研究。E-mail:616664366@qq.com
  • 基金资助:
    湖北省自然科学基金项目(2022CFD132);湖北省气象服务中心面上项目(2023M02);湖北省气象局科技发展基金项目(2021Y12)

Research on temperature characteristics and prediction model of Wuhan Tianxingzhou bridge deck in winter

HE Liwei1(), CHEN Yingying1(), ZHAI Hongnan2, WANG Yaxin1, LU Jing1   

  1. 1. Hubei Meteorological Service Center, Wuhan 430074, China
    2. Wuhan Public Meteorological Service Center, Wuhan 430040, China
  • Received:2023-10-27 Revised:2024-07-08 Online:2024-12-31 Published:2025-01-15

摘要:

研究桥面温度差异特征及其预报模型,可为交通管理部门提供恶劣天气预判和减少交通事故的决策依据。利用近3 a冬季武汉天兴洲大桥路段3个交通气象站逐5 min路面最低温度、气温、风速、降水等观测资料,分析了桥面与路面最低温度的逐日差异、典型个例的逐时变化特征及不同天气条件下的温度变化规律,并基于多元线性回归和反向传播(Back Propagation,BP)神经网络方法建立了桥面最低温度预报模型,采用智能网格最低气温预报产品对模型进行驱动和检验。结果表明:由于工程结构、路面材质、地理环境和环境气象要素的差异,桥面温度通常低于路面温度,且在晴天条件下二者的温差最大。桥面温度下降至冰点以下的速度更快,且低温持续时间更长。多元线性回归和BP神经网络方法均能取得较好的预报效果,BP方法更适用于对预测精度要求较高的场景,而多元线性回归方法则适合对预报准确率要求较高的应用。

关键词: 桥面温度, 路面温度, 差异性, BP神经网络, 线性回归

Abstract:

Studying the characteristics of temperature differences on bridge decks and their prediction models can provide decision-making basis for traffic management departments to predict severe weather and reduce traffic accidents. Based on observation data from three traffic meteorological stations on the Tianxingzhou Bridge section in Wuhan over the past three years, including the minimum temperature, air temperature, wind speed, precipitation, etc., for every five minutes, the daily differences in the minimum temperature between the bridge deck and the road surface, the hourly variation characteristics of typical weather cases, and the temperature change patterns under different weather conditions are analyzed. The prediction models for the minimum temperature of the bridge deck are established by using multiple linear regression and BP (Back Propagation) neural network methods, and the models are driven and tested using intelligent grid minimum temperature prediction products. The results indicate that due to differences in engineering structure, pavement material, geographical environment, and environmental meteorological factors, the temperature of the bridge deck is usually lower than that of the pavement, and the temperature difference between the two is the largest under sunny conditions. The speed at which the temperature on the bridge deck drops below freezing point is faster, and the duration of low temperature maintenance is longer. Both multiple linear regression and BP neural network methods can achieve good prediction results. Among them, BP method is more suitable for scenarios that require high prediction accuracy, while multiple linear regression method is suitable for applications that require high prediction accuracy.

Key words: bridge deck temperature, road surface temperature, differences, BP neural network, linear regression

中图分类号: