[1] |
陈笑晨, 唐振飞, 陈锡宽, 等, 2022. 基于CMIP6的福建省极端气温预估[J]. 干旱气象, 40(3): 415-423.
DOI
|
[2] |
翟佳伦, 史小红, 刘禹, 等, 2021. 乌梁素海冰封期水温与溶解氧浓度变化研究[J]. 干旱区研究, 38(3): 629-639.
|
[3] |
董哲仁, 孙东亚, 2007. 生态水利工程原理与技术[M]. 北京: 中国水利水电出版社.
|
[4] |
马敏劲, 陈玥, 康国强, 等, 2022. 青藏高原夏季边界层再分析资料的偏差分析及订正[J]. 干旱气象, 40(1): 95-107.
DOI
|
[5] |
孙永寿, 李其江, 刘弢, 等, 2021. 青海湖1956—2019年水位变化原因及水量平衡分析研究[J]. 水文, 41(5): 91-96.
|
[6] |
汪关信, 张廷军, 李晓东, 等, 2021. 利用被动微波探测青海湖湖冰物候变化特征[J]. 冰川冻土, 43(1): 296-310.
DOI
|
[7] |
谢婷, 马育军, 张午朝, 2021. 青海湖北岸大气向下长波辐射特征及云的影响[J]. 干旱气象, 39(2): 288-295.
|
[8] |
阳坤, 何杰, 唐文君, 等, 2019. 中国区域地面气象要素驱动数据集(1979—2018)[J]. 时空三极环境大数据平台. DOI: 10.11888/Atmospheric Physics.tpe.249369.file.
|
[9] |
张朝能, 1999. 水体中饱和溶解氧的求算方法探讨[J]. 环境科学研究, 12(2): 54-55.
|
[10] |
CHEN R, LI H Y, WANG X J, et al, 2022. Surface air temperature changes over the Tibetan Plateau: historical evaluation and future projection based on CMIP6 models[J]. Geoscience Frontiers, 13(6): 143-157.
|
[11] |
GLEICK P H, 1993. Water and conflict: fresh water resources and international security[J]. International Security, 18(1), 79. DOI: 10.2307/2539033.
|
[12] |
HUANG L, WANG J B, ZHU L P, et al, 2017. The warming of large lakes on the Tibetan Plateau: evidence from a lake model simulation of nam co, China, during 1979—2012[J]. Journal of Geophysical Research: Atmospheres, 122(24): 13 095-13 107.
|
[13] |
JANE S F, HANSEN G J A, KRAEMER B M, et al, 2021. Widespread deoxygenation of temperate lakes[J]. Nature, 594(7861): 66-70.
|
[14] |
KRAEMER B M, PILLA R M, WOOLWAY R I, et al, 2021. Climate change drives widespread shifts in lake thermal habitat[J]. Nature Climate Change, 11(6): 521-529.
|
[15] |
LIU Y, CHEN H P, 2022. Future warming accelerates lake variations in the Tibetan Plateau[J]. International Journal of Climatology, 42(16): 8 687-8 700.
|
[16] |
MATEY V, RICHARDS J G, WANG Y X, et al, 2008. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocyprisprzewalskii[J]. Journal of Experimental Biology, 211(7): 1 063-1 074.
|
[17] |
MIRONOV D, HEISE E, KOURZENEVA E, et al, 2010. Implementation of the lake parameterization scheme FLake into the numerical weather prediction model COSMO[J]. Boreal Environment Research, 15(2): 218-230.
|
[18] |
MUÑOZ-SABATER J, DUTRA E, AGUSTÍ-PANAREDA A, et al, 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science Data, 13(9): 4 349-4 383.
|
[19] |
O’REILLYC M, SHARMA S, GRAY D K, et al, 2015. Rapid and highly variable warming of lake surface waters around the globe[J]. Geophysical Research Letters, 42(24): 10 773-10 781.
|
[20] |
POUR H K, DUGUAY C R, MARTYNOV A, et al, 2012. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements[J]. Tellus A: Dynamic Meteorology and Oceanography, 64(1), 17614. DOI: 10.3402/tellusa.v64i0.17614.
|
[21] |
RANGWALA I, MILLER J R, RUSSELL G L, et al, 2010. Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century[J]. Climate Dynamics, 34(6): 859-872.
|
[22] |
STEPANENKO V M, GOYETTE S, MARTYNOV A, et al, 2010. First steps of a lake model intercomparison project LakeMIP[J]. Boreal Environment Research, 15(2): 191-202.
|
[23] |
SU D S, HU X Q, WEN L J, et al, 2019. Numerical study on the response of the largest lake in China to climate change[J]. Hydrology and Earth System Sciences, 23(4): 2 093-2 109.
|
[24] |
TAO J, CHEN Y F, HE D K, et al, 2015. Relationships between climate and growth of Gymnocypris selincuoensis in the Tibetan Plateau[J]. Ecology and Evolution, 5(8): 1 693-1 701.
|
[25] |
TILL A, RYPEL A L, BRAY A, et al, 2019. Fish die-offs are concurrent with thermal extremes in north temperate lakes[J]. Nature Climate Change, 9(8): 637-641.
|
[26] |
VERPOORTER C, KUTSER T, SEEKELL D A, et al, 2014. A global inventory of lakes based on high-resolution satellite imagery[J]. Geophysical Research Letters, 41(18): 6 396-6 402.
|
[27] |
WOOLWAY R I, JENNINGS E, SHATWELL T, et al, 2021. Lake heatwaves under climate change[J]. Nature, 589(7 842): 402-407.
|
[28] |
YAO T D, XUE Y K, CHEN D L, et al, 2019. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 100(3): 423-444.
|
[29] |
ZHANG G Q, YAO T D, CHEN W F, et al, 2019. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 221: 386-404.
|
[30] |
ZHANG G Q, YAO T D, XIE H J, et al, 2014a. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. Journal of Geophysical Research: Atmospheres, 119(14): 8 552-8 567.
|
[31] |
ZHANG L W, XIA X H, LIU S D, et al, 2020. Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau[J]. Nature Geoscience, 13(5): 349-354.
|
[32] |
ZHANG Y L, WU Z X, LIU M L, et al, 2014b. Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China[J]. Limnology and Oceanography, 59(4): 1 193-1 202.
|