Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (3): 424-434.DOI: 10.11755/j.issn.1006-7639-2025-03-0424

• Articles • Previous Articles     Next Articles

Comparative analysis of physical quantity characteristic of three extreme short-term heavy rainfalls with different intensities under cold vortex background during summer in Tianjin

JIN Zhenhua1(), BU Qingjun1(), HUANG Anning2   

  1. 1. Binhai New Area Meteorological Office of Tianjin, Tianjin 300457, China
    2. School of Atmospheric Sciences, Nanjing University, Nanjing 210023,China
  • Received:2024-07-15 Revised:2024-09-25 Online:2025-06-30 Published:2025-07-12

冷涡背景下天津夏季三次不同强度极端短时强降水物理量特征对比分析

靳振华1(), 卜清军1(), 黄安宁2   

  1. 1.天津市滨海新区气象局,天津 300457
    2.南京大学大气科学学院,江苏 南京 210023
  • 通讯作者: 卜清军
  • 作者简介:靳振华(1984—),女,天津滨海新区人,硕士,高级工程师,主要从事灾害性天气预报技术研究。E-mail:jinzhenhua2009@163.com
  • 基金资助:
    中国气象局复盘总结专项(FPZJ2023-007);中国气象局城市气象重点开放实验室开放基金课题(LUM-2024-12)

Abstract:

The comparative analysis of local physical processes of rainfall with different intensities under similar circulation background is an effective way to improve the accurate forecasting ability of heavy precipitation events in the region. Based on multi-source data, this paper analyzed the thresholds of physical quantities of sudden increase of rainfall intensity during three heavy rainfall processes under the background of cold vortex in Tianjin on June 28 (hereinafter abbreviated as the “6·28” process), July 1 (hereinafter abbreviated as the “7·1” process) and July 26 (hereinafter abbreviated as the “7·26” process) in 2022. The results show that during the "6·28" process, the synergistic effects of extremely strong water vapor convergence (-8.0×10-7 g·hPa-1·cm-2·s-1), low lifting condensation level (962 hPa), and deep warm cloud layer (4.0 km), combined with the mesoscale vortices triggered by cold pool outflow and low-level convergence, as well as low-quality storms and the training effects, collectively resulted in a maximum rainfall intensity increase of 96.6 mm·h-1.During the “7·26” process, the higher ambient temperatures (32.1 ℃) and convective effective potential energy (CAPE) (2 464 J·kg-1) promoted the vertical development of high quality storms. However, the increasing proportion of ice phase particles limited the increase in rainfall intensity (88.8 mm·h-1). During the “7·1” process, the weak vertical wind shear (1.3 m·s-1) and insufficient cold pool strength (21.9 ℃) were impossible to trigger new convection, with the lowest increase in rainfall intensity (55.3 mm·h-1). There are common thresholds of physical quantities before the sudden increase in rainfall intensity in the three processes: the CAPE greater than 1 200 J·kg-1, the warm cloud layer thickness greater than 3.1 km, total atmospheric precipitable water greater than 47.5 mm, and the occurrence time of the surface convergence line being 1.5-2.0 h ahead of the occurrence time of heavy precipitation. The correlation coefficient between ET, CR, VIL and rainfall intensity increment exceeded 0.90, while the correlation coefficient between dew point change in the first hour and rainfall intensity increment was -0.90 during the extreme heavy rainfalls.

Key words: extreme short-term heavy rainfall, cold vortex, sudden increase in rainfall intensity, mesoscale vortex

摘要: 在相似环流背景下开展不同降雨强度降水过程的局地关键物理量对比分析,是提升该地区强降水事件精细化预报能力的有效路径。本文基于多源观测数据,对2022年6月28日(简称“6·28”过程)、7月1日(简称“7·1”过程)和7月26日(简称“7·26”过程)天津3次冷涡背景下的雨强突增过程开展物理量阈值分析。结果表明:“6·28”过程中,极强水汽辐合(-8.0×10?? g·hPa?1·cm?2·s?1)、低抬升凝结高度(962 hPa)与深厚暖云层(4.0 km)形成协同效应,叠加冷池出流与低空辐合触发的中尺度涡旋,以及低质心风暴和列车效应,共同导致本次过程雨强最大增幅达96.6 mm·h-1;“7·26”过程以较高的环境温度(32.1 ℃)和对流有效位能(2 464 J·kg?1)促使高质心风暴垂直发展,但冰相粒子占比增加使得雨强增幅(88.8 mm·h-1)受限;“7·1”过程受弱垂直风切变(1.3 m·s?1)与冷池强度(21.9 ℃)不足影响,冷池出流无法与低层辐合协同触发新对流,导致雨强增幅最低(55.3 mm·h-1)。3次过程雨强跃增前均存在共性物理量阈值:对流有效位能大于1 200 J·kg?1、暖云层厚度大于3.1 km、整层大气可降水量大于47.5 mm,且地面辐合线出现时间超前强降水发生时间1.5~2.0 h。此外,回波顶高、组合反射率、垂直累积液态水含量与雨强增量的相关系数均超过0.90,前1 h露点温度变化与雨强增量的相关系数为-0.90。

关键词: 极端短时强降水, 冷涡, 雨强突增, 中尺度涡旋

CLC Number: