Journal of Arid Meteorology ›› 2022, Vol. 40 ›› Issue (6): 1068-1080.DOI: 10.11755/j.issn.1006-7639(2022)-06-1068
• Review • Previous Articles Next Articles
CAO Xiaoyun1,2(), ZHOU Bingrong2,3(
), ZHOU Huakun4, QIAO Bin1,2, YAN Yuqian1,2, ZHAO Tong1,2, CHEN Qi1,2, ZHAO Huifang1,2, YU Hongyan5
Received:
2021-12-02
Revised:
2022-04-19
Online:
2022-12-31
Published:
2023-01-10
Contact:
ZHOU Bingrong
曹晓云1,2(), 周秉荣2,3(
), 周华坤4, 乔斌1,2, 颜玉倩1,2, 赵彤1,2, 陈奇1,2, 赵慧芳1,2, 于红妍5
通讯作者:
周秉荣
作者简介:
曹晓云(1993—),女,硕士,工程师,从事青藏高原气候与环境研究. E-mail: xiaoyun_cao@126.com。
基金资助:
CLC Number:
CAO Xiaoyun, ZHOU Bingrong, ZHOU Huakun, QIAO Bin, YAN Yuqian, ZHAO Tong, CHEN Qi, ZHAO Huifang, YU Hongyan. Research progress on the impact of climate change on vegetation ecosystem in the Tibetan Plateau[J]. Journal of Arid Meteorology, 2022, 40(6): 1068-1080.
曹晓云, 周秉荣, 周华坤, 乔斌, 颜玉倩, 赵彤, 陈奇, 赵慧芳, 于红妍. 气候变化对青藏高原植被生态系统的影响研究进展[J]. 干旱气象, 2022, 40(6): 1068-1080.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2022)-06-1068
Fig.1 Schematic diagram of the physical mechanisms controlling the profile of warming amplification and elevation dependent warming in the Tibetan Plateau (cited from literature [17])
Fig.2 The spatial division of annual precipitation change in the Tibetan Plateau from 1961 to 2015 (cited from literature [31]) (a) variation trend, (b) fluctuation characteristics
Fig.4 The phenological metrics’ trend before and after turning points and trends of the whole research period inthe Tibetan Plateau (cited from literature [69])
Fig.6 The change trend of NEP in grassland ecosystem from 2001 to 2015 (a) (cited from literature [110]) and carbon storage of vegetation with different types (b) (modified from literature [112]) in the Tibetan Plateau
[1] |
YAO T D, THOMPSON L G, MOSBRUGGER V, et al. Third Pole Environment (TPE)[J]. Environmental Development, 2012, 3: 52-64.
DOI URL |
[2] |
YAO T D, THOMPSON L G, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667.
DOI URL |
[3] |
孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 2012, 67(1): 3-12.
DOI |
[4] | 于海英, 许建初. 气候变化对青藏高原植被影响研究综述[J]. 生态学杂志, 2009, 28(4): 747-754. |
[5] | 张经炜, 王金亭, 陈伟烈, 等. 试论青藏高原植被的纬向地带性[J]. 中国科学, 1980, 10(11): 64-72. |
[6] | 郑度, 姚檀栋. 青藏高原隆升与环境效应[M]. 北京: 科学出版社, 2004. |
[7] | 潘保田, 李吉均. 青藏高原:全球气候变化的驱动机与放大器 Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报(自然科学版), 1996, 32(1): 108-115. |
[8] | 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035. |
[9] |
DUAN A M, XIAO Z X. Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Scientific Reports, 2015, 5: 13711. DOI: 10.1038/srep13711.
DOI PMID |
[10] | 姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931. |
[11] |
YAO T D, XUE Y K, CHEN D L, et al. Recent 1201[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
DOI URL |
[12] | 中国气象局气候变化中心. 中国气候变化蓝皮书(2020)[M]. 北京: 科学出版社, 2020. |
[13] | 陈槐, 鞠佩君, 张江, 等. 青藏高原高寒草地生态系统变化的归因分析[J]. 科学通报, 2020, 65(22): 2406-2418. |
[14] | 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64(27): 2842-2855. |
[15] |
SHEN M G, PIAO S L, DORJI T, et al. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges[J]. National Science Review, 2015, 2(4): 454-467. DOI:10.1093/nsr/nwv058.
DOI URL |
[16] | 王常顺, 孟凡栋, 李新娥, 等. 青藏高原草地生态系统对气候变化的响应[J]. 生态学杂志, 2013, 32(6): 1587-1595. |
[17] |
游庆龙, 康世昌, 李剑东, 等. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901.
DOI |
[18] |
DUAN A M, WU G X. Change of cloud amount and the climate warming on the Tibetan Plateau[J]. Geophysical Research Letters, 2006, 33(22), L22704. DOI:10.1029/2006GL027946.
DOI URL |
[19] |
YOU Q L, CAI Z Y, PEPIN N, et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences[J]. Earth-Science Reviews, 2021, 217, 103625. DOI:10.1016/j.earscirev.2021.103625.
DOI |
[20] |
KUANG X X, JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research: Atmospheres, 2016, 121:3979-4007.
DOI URL |
[21] | 李菲, 郜永祺, 万欣, 等. 全球变暖与地球“三极”气候变化[J]. 大气科学学报, 2021, 44(1): 1-11. |
[22] |
王慧, 张璐, 石兴东, 等. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
DOI |
[23] |
GUO D L, PEPIN N, YANG K, et al. Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau[J]. Science Bulletin, 2021, 66(11): 1146-1150.
DOI URL |
[24] |
YOU Q L, CHEN D L, WU F Y, et al. Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210, 103349.DOI: 10.1016/j.earscirev.2020.103349.
DOI |
[25] |
DU M Y, LIU J S, LI Y N, et al. Are high altitudinal regions warming faster than lower elevations on the Tibetan Plateau?[J]. International Journal of Global Warming, 2019, 18(3/4): 363-384.
DOI URL |
[26] | 沈鎏澄. 海拔依赖型增暖背景下青藏高原积雪深度时空变化特征及成因分析[D]. 金华: 浙江师范大学, 2020. |
[27] | LIU X D, CHENG Z G, YAN L B, et al. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J]. Global & Planetary Change, 2009, 68(3): 164-174. |
[28] | 姚秀萍, 马嘉理, 刘俏华, 等. 青藏高原夏季降水研究进展[J]. 气象科技进展, 2021, 11(3): 66-74. |
[29] |
ZHANG D L, HUANG J P, GUAN X D, et al. Long-term trends of precipitable water and precipitation over the Tibetan Plateau derived from satellite and surface measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 122: 64-71.
DOI URL |
[30] | 冯川玉, 李陈彧, 周志浩, 等. 青藏高原降水变化特征及趋势分析[J]. 水文, 2022, 42(1):75-79. |
[31] | 冀钦, 杨建平, 陈虹举. 1961—2015年青藏高原降水量变化综合分析[J]. 冰川冻土, 2018, 40(6):1090-1099. |
[32] |
许建伟, 高艳红, 彭保发, 等. 1979—2016年青藏高原降水的变化特征及成因分析[J]. 高原气象, 2020, 39(2): 234-244.
DOI |
[33] | 马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析[J]. 自然资源学报, 2020, 35(12): 3039-3050. |
[34] |
李红梅, 申红艳, 汪青春, 等. 1961—2017年青海高原雨季和降水的变化特征[J]. 高原气象, 2021, 40(5): 1038-1047.
DOI |
[35] | 靳铮, 游庆龙, 吴芳营, 等. 青藏高原三江源地区近60 a气候与极端气候变化特征分析[J]. 大气科学学报, 2020, 43(6): 1042-1055. |
[36] |
BUITENWERF R, ROSE L, HIGGINS S I. Three decades of multi-dimensional change in global leaf phenology[J]. Nature Climate Change, 2015, 5: 364-368.
DOI URL |
[37] | KONG D D, ZHANG Q, SINGH V P, et al. Seasonal vegetation response to climate change in the Northern Hemisphere (1982-2013)[J]. Global & Planetary Change, 2017, 148: 1-8. |
[38] | 张江, 袁旻舒, 张婧, 等. 近30年来青藏高原高寒草地NDVI动态变化对自然及人为因子的响应[J]. 生态学报, 2020, 40(18): 6269-6281. |
[39] |
ZHOU Y K, FAN J F, WANG X Y. Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau[J]. PloS one, 2020, 15(6), e234848. DOI: 10.1371/journal.pone.0234848.
DOI |
[40] | 丁佳, 刘星雨, 郭玉超, 等. 1980—2015年青藏高原植被变化研究[J]. 生态环境学报, 2021, 30(2): 288-296. |
[41] | 李红英, 张存桂, 汪生珍, 等. 近40年青藏高原植被动态变化对水热条件的响应[J]. 生态学报, 2022, 42(12):4770-4783. |
[42] | 徐兴奎, 陈红, LEVY J K. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析[J]. 科学通报, 2008, 53(4): 456-462. |
[43] |
梁四海, 陈江, 金晓媚, 等. 近21年青藏高原植被覆盖变化规律[J]. 地球科学进展, 2007, 22(1): 33-40.
DOI |
[44] |
张戈丽, 欧阳华, 张宪洲, 等. 基于生态地理分区的青藏高原植被覆被变化及其对气候变化的响应[J]. 地理研究, 2010, 29(11): 2004-2016.
DOI |
[45] |
CONG N, SHEN M G, YANG W, et al. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland[J]. International Journal of Biometeorology, 2017, 61(8): 1433-1444.
DOI PMID |
[46] | 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究[J]. 遥感技术与应用, 2019, 34(3): 667-676. |
[47] | 魏佳珩. 青藏高原植被的时空变化及其对极端气候事件的响应[D]. 北京: 中国地质大学, 2020. |
[48] |
韩炳宏, 周秉荣, 颜玉倩, 等. 2000-2018年间青藏高原植被覆盖变化及其与气候因素的关系分析[J]. 草地学报, 2019, 27(6): 1651-1658.
DOI |
[49] | 王万鑫, 范广洲. 基于生态地理分区的青藏高原NDVI变化特征研究[J]. 成都信息工程大学学报, 2020, 35(3): 306-312. |
[50] |
杨达, 易桂花, 张廷斌, 等. 青藏高原植被生长季NDVI时空变化与影响因素[J]. 应用生态学报, 2021, 32(4): 1361-1372.
DOI |
[51] | 黄祥麟. 青藏高原生长季植被NDVI对气候变化的响应研究[D]. 成都: 成都理工大学, 2020. |
[52] |
张镱锂, 李兰晖, 丁明军, 等. 新世纪以来青藏高原绿度变化及动因[J]. 自然杂志, 2017, 39(3): 173-178.
DOI |
[53] | 丁明军, 张镱锂, 孙晓敏, 等. 近10年青藏高原高寒草地物候时空变化特征分析[J]. 科学通报, 2012, 57(33): 3185-3194. |
[54] |
刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应研究[J]. 植物生态学报, 2022, 46(1):18-26.
DOI |
[55] |
SIEGMUND J F, WIEDERMANN M, DONGES J F, et al. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species[J]. Biogeosciences, 2016, 13(19): 5541-5555.
DOI URL |
[56] |
CAO M K, WOODWARD F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393(6682): 249-252.
DOI URL |
[57] | 张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化[J]. 科学通报, 2015, 60(32): 3048-3056. |
[58] |
王军, 张骁, 高岩. 青藏高原植被动态与环境因子相互关系的研究现状与展望[J]. 地学前缘, 2021, 28(4): 70-82.
DOI |
[59] | 袁巧丽, 杨建. 青藏高原草地植被物候变化及其对气候变化的响应[J]. 中国草地学报, 2021, 43(9):32-43. |
[60] | 李维佳. 1982—2017年青藏高原植被物候时空变化趋势研究[D]. 长沙: 中南林业科技大学, 2020. |
[61] | 陈思宇, 梁天刚. 基于EVI2和多趋势分析法的高原草地植被物候动态监测研究[J]. 遥感技术与应用, 2019, 34(2): 355-366. |
[62] |
YU H Y, LUEDELING E, XU J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2010, 107(51): 22 151-22 156.
DOI URL |
[63] |
PIAO S L, CUI M D, CHEN A P, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 2011, 151: 1599-1608.
DOI URL |
[64] |
DING M J, LI L H, ZHANG Y L, et al. Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data[J]. Journal of Geographical Sciences, 2015, 25(2): 131-148.
DOI |
[65] |
TUCKER C J, PINZON J E, BROWN M E, et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. International Journal of Remote Sensing, 2005, 26(20): 4485-4498.
DOI URL |
[66] | 常清, 王思远, 孙云晓, 等. 青藏高原典型植被生长季遥感模型提取分析[J]. 地球信息科学学报, 2014, 16(5): 815-823. |
[67] | 宋春桥, 游松财, 柯灵红, 等. 藏北高原植被物候时空动态变化的遥感监测研究[J]. 植物生态学报, 2011, 35(8): 853-863. |
[68] | SHEN M G, ZHANG G X, CONG N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2014, 189-190: 71-80. |
[69] |
孔冬冬, 张强, 黄文琳, 等. 1982—2013年青藏高原植被物候变化及气象因素影响[J]. 地理学报, 2017, 72(1): 39-52.
DOI |
[70] |
ZHANG G L, ZHANG Y J, DONG J W, et al. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(11): 4309-4314.
DOI PMID |
[71] |
PIAO S L, LIU Q, CHEN A P, et al. Plant phenology and global climate change: current progresses and challenges[J]. Global Change Biology, 2019, 25(6): 1922-1940.
DOI PMID |
[72] | 安淳淳. 基于MODIS数据的青藏高原植被物候监测及其对气候变化的响应研究[D]. 北京: 中国科学院大学, 2019. |
[73] | 黄文洁, 曾桐瑶, 黄晓东. 青藏高原高寒草地植被物候时空变化特征[J]. 草业科学, 2019, 36(4): 1032-1043. |
[74] |
YANG B, HE M H, SHISHOV V, et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6966-6971.
DOI PMID |
[75] |
LIANG Q L, XU X T, MAO K S, et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains[J]. Journal of Biogeography, 2018, 45(6): 1334-1344.
DOI URL |
[76] |
LI X L, XUE Z P, GAO J. Environmental influence on vegetation properties of frigid wetlands on the Qinghai-Tibet Plateau, western China[J]. Wetlands, 2016, 36(5): 807-819.
DOI URL |
[77] | 丁明军, 张镱锂, 刘林山, 等. 青藏高原植物返青期变化及其对气候变化的响应[J]. 气候变化研究进展, 2011, 5(7): 317-323. |
[78] |
PAUL L K, RINNE P L, CHRISTIAAN V. Shoot meristems of deciduous woody perennials: self-organization and morphogenetic transitions[J]. Current Opinion in Plant Biology, 2014, 17: 86-95.
DOI PMID |
[79] | 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学:地球科学, 2019, 49(9): 1321-1334. |
[80] |
WANG X Y, WANG T, GUO H, et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems[J]. Global Change Biology, 2018, 24(4): 1651-1662.
DOI PMID |
[81] |
PIAO S L, FANG J Y, HE J S. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999[J]. Climatic Change, 2006, 74(1): 253-267.
DOI URL |
[82] | 尹航. 青藏高原地区积雪与植被NPP变化响应遥感诊断[D]. 北京: 中国科学院大学, 2018. |
[83] |
ZHANG L, GUO H D, WANG C Z, et al. The long-term trends (1982-2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences, 2014, 72(6): 1827-1841.
DOI URL |
[84] | 黄玫, 季劲钧, 彭莉莉. 青藏高原 1981-2000年植被净初级生产力对气候变化的响应[J]. 气候与环境研究, 2008, 13(5): 608-616. |
[85] | 李文华. 青藏高原生态学研究的回顾与展望[J]. 资源与生态学报:英文版. 2017, 8(1): 1-4. |
[86] |
孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究[J]. 地理学报, 2000, 55(1): 36-45.
DOI |
[87] | 杨潇, 郭兵, 韩保民, 等. 青藏高原NPP时空演变格局及其驱动机制分析[J]. 长江流域资源与环境, 2019, 28(12): 3038-3050. |
[88] | 陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(10): 2511-2527. |
[89] | 许洁, 陈惠玲, 商沙沙, 等. 2000—2014年青藏高原植被净初级生产力时空变化及对气候变化的响应[J]. 干旱区地理, 2020, 43(3): 592-601. |
[90] |
李传华, 韩海燕, 范也平, 等. 基于Biome-BGC模型的青藏高原五道梁地区NPP变化及情景模拟[J]. 地理科学, 2019, 39(8): 1330-1339.
DOI |
[91] |
周秉荣, 朱生翠, 李红梅. 三江源区植被净初级生产力时空特征及对气候变化的响应[J]. 干旱气象, 2016, 34(6): 958-965.
DOI |
[92] | 韩海燕. 基于Biome-BGC模型的青藏高原草地NPP估算及情景模拟[D]. 兰州: 西北师范大学, 2019. |
[93] |
LIU B Y, SUN J, LIU M, et al. The aridity index governs the variation of vegetation characteristics in alpine grassland, Northern Tibet Plateau[J]. PeerJ, 2019, 7, e7272. DOI: 10.7717/peerj.7272.
DOI |
[94] |
LI C Y, PENG F, XUE X, et al. Productivity and quality of alpine grassland vary with soil water availability under experimental warming[J]. Frontiers in Plant Science, 2018, 9, 1790. DOI: 10.3389/fpls.2018.01790.
DOI |
[95] | 宇万太, 于永强. 植物地下生物量研究进展[J]. 应用生态学报, 2001, 12(6): 927-932. |
[96] | 陈卓奇, 邵全琴, 刘纪远, 等. 基于MODIS的青藏高原植被净初级生产力研究[J]. 中国科学:地球科学, 2012, 42(3): 402-410. |
[97] |
SEIDL R, KLONNER G, RAMMER W, et al. Invasive alien pests threaten the carbon stored in Europe’s forests[J]. Nature Communications, 2018, 9(1), 1626. DOI:10.1038/s41467-018-04096-w.
DOI URL |
[98] |
SCURLOCK J M O, JOHNSON K, OLSON R J. Estimating net primary productivity from grassland biomass dynamics measurements[J]. Global Change Biology, 2002, 8: 736-753.
DOI URL |
[99] |
王军邦, 黄玫, 林小惠. 青藏高原草地生态系统碳收支研究进展[J]. 地理科学进展, 2012, 31(1): 123-128.
DOI |
[100] |
RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2): 81-99.
DOI URL |
[101] | 高添, 徐斌, 杨秀春, 等. 青藏高原草地生态系统生物量碳库研究进展[J]. 地理科学进展, 2012, 31(12): 1724-1731. |
[102] |
PIAO S L, FANG J Y, ZHOU L M, et al. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999[J]. Global Biogeochemical Cycles, 2007, 27(2), B2002. DOI:10.1029/2005GB002634.
DOI |
[103] | 刘凤, 曾永年. 2000—2015年青海高原植被碳源/汇时空格局及变化[J]. 生态学报, 2021, 41(14): 5792-5803. |
[104] |
CHEN L T, JING X, FLYNN D F B, et al. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes[J]. Geoderma, 2017, 288: 166-174.
DOI URL |
[105] | 周越. 基于通用陆面模式的青藏高原土壤有机碳时空变化模拟研究[D]. 杭州: 浙江大学, 2020. |
[106] |
ZHU J B, ZHANG F W, LI H Q, et al. Seasonal and inter-annual variations of CO2 fluxes over 10 years in an alpine wetland on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125, e2020JG006011. DOI:10.1029/2020JG006011.
DOI |
[107] | LI H Q, ZHANG F W, LI Y N, et al. Seasonal and inter-annual variations in CO2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau, China[J]. Agricultural and Forest Meteorology, 2016, 228-229: 95-103. |
[108] | 李若玮, 叶冲冲, 王毅, 等. 基于InVEST模型的青藏高原碳储量估算及其驱动力分析[J]. 草地学报, 2021, 29(增刊1): 43-51. |
[109] | 王建林, 欧阳华, 王忠红, 等. 青藏高原高寒草原生态系统植被碳密度分布规律及其与气候因子的关系[J]. 植物资源与环境学报, 2010, 19(1): 1-7. |
[110] | 周夏飞, 於方, 曹国志, 等. 2001—2015年青藏高原草地碳源/汇时空变化及其与气候因子的关系[J]. 水土保持研究, 2019, 26(1): 76-81. |
[111] |
马维伟, 李广, 宋捷, 等. 植被退化对尕海湿地土壤有机碳库及碳库管理指数的影响[J]. 草地学报, 2019, 27(3): 687-694.
DOI |
[112] | 李文华, 赵新全, 张宪洲, 等. 青藏高原主要生态系统变化及其碳源/碳汇功能作用[J]. 自然杂志, 2013, 35(3): 172-178. |
[113] | 张伟, 张宏, 泽柏. 我国高寒草甸碳循环研究进展[J]. 山地学报, 2006, 24(增刊1): 266-274. |
[114] |
CHANG X F, WANG S P, LUO C, et al. Responses of soil microbial respiration to thermal stress in alpine steppe on the Tibetan Plateau[J]. European Journal of Soil Science, 2012, 63(3): 325-331.
DOI URL |
[115] |
PENG S L, PIAO S L, WANG T, et al. Temperature sensitivity of soil respiration in different ecosystems in China[J]. Soil Biology & Biochemistry, 2009, 41(5): 1008-1014.
DOI URL |
[116] |
HOPPING K A, KNAPP A K, DORJI T, et al. Warming and land use change concurrently erode ecosystem services in Tibet[J]. Global Change Biology, 2018, 24(11): 5534-5548.
DOI PMID |
[117] |
DING J Z, CHEN L Y, JI C J, et al. Decadal soil carbon accumulation across Tibetan permafrost regions[J]. Nature Geoscience, 2017, 10(6): 420-426.
DOI |
[118] |
PIAO S L, FANG J Y, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241): 1009-1013.
DOI URL |
[119] |
SUN J, ZHOU T C, LIU M. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2020, 29(1): 50-64.
DOI URL |
[120] | PIAO S L, TAN K, NAN H J, et al. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades[J]. Global and Planetary Change, 2012, 98-99: 73-80. |
[121] |
WANG Q J, LI S X, JING Z C, et al. Response of carbon and nitrogen content in plants and soils to vegetation cover change in alpine Kobresia meadow of the source region of Lantsang, Yellow and Yangtze Rivers[J]. Acta Ecologica Sinica, 2008, 28(3): 885-894.
DOI URL |
[122] | 宋珊珊, 张建胜, 郑天立, 等. 围栏封育对青海海北高寒草甸植被碳储量的影响[J]. 草业科学, 2020, 37(12): 2414-2421. |
[123] |
CHEN N, ZHANG Y J, ZHU J T, et al. Multiple-scale negative impacts of warming on ecosystem carbon use efficiency across the Tibetan Plateau grasslands[J]. Global Ecology and Biogeography, 2021, 30(1/2): 398-413.
DOI URL |
[124] | 贺慧丹, 李红琴, 符义稳, 等. 祁连山南麓高寒灌丛生态系统生长季CO2通量动态年际特征及环境驱动[J]. 科学通报, 2022, 67(2): 173-183. |
[125] |
徐振朋, 宛涛, 蔡萍, 等. 裸果木种群遗传多样性特点及与地理气候因子关联研究[J]. 草地学报, 2018, 26(1): 70-76.
DOI |
[126] | 何远政, 黄文达, 赵昕, 等. 气候变化对植物多样性的影响研究综述[J]. 中国沙漠, 2021, 41(1): 59-66. |
[127] |
LI, X R, JIA R L, ZHANG Z S, et al. Hydrological response of biological soil crusts to global warming: a ten-year simulative study[J]. Global Change Biology, 2018, 24(10): 4960-4971.
DOI URL |
[128] | 中国科学院生物多样性委员会. 生物多样性研究的原理与方法[M]. 北京: 中国科学技术出版社, 1994. |
[129] |
SALA O E, CHAPIN F S, ARMESTO J J, et al. Global biodiversity scenarios for the year 2100[J]. Science, 2000, 287(5459): 1770-1774.
DOI PMID |
[130] |
KOVACH R P, MUHLFELD C C, WADE A A, et al. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout[J]. Global Change Biology, 2015, 21(7): 2510-2524.
DOI PMID |
[131] | 赵新全. 三江源区退化草地生态系统恢复与可持续管理[M]. 北京: 科学出版社, 2011. |
[132] | 赵新全. 高寒草甸生态系统与全球变化[M]. 北京: 科学出版社, 2009. |
[133] | 李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响[J]. 生态学报, 2011, 31(4): 895-905. |
[134] | 周华坤, 周兴民, 赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究[J]. 植物生态学报, 2000, 24(5): 547-553. |
[135] | 赵艳艳, 周华坤, 姚步青, 等. 长期增温对高寒草甸植物群落和土壤养分的影响[J]. 草地学报, 2015, 23(4): 665-671. |
[136] |
WANG Q, ZHANG Z H, DU R, et al. Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change[J]. Journal of Ecology, 2019, 107(4): 1944-1955.
DOI URL |
[137] |
LI W J, LI J H, LIU S S, et al. Magnitude of species diversity effect on aboveground plant biomass increases through successional time of abandoned farmlands on the eastern Tibetan Plateau of China[J]. Land Degradation & Development, 2017, 28(1): 370-378.
DOI URL |
[138] |
TRISOS C H, MEROW C, PIGOT A L. The projected timing of abrupt ecological disruption from climate change[J]. Nature, 2020, 580(7804): 496-501.
DOI URL |
[139] |
ZHANG C H, WILLIS C G, KLEIN J A, et al. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet Plateau[J]. Biological Conservation, 2017, 213: 218-224.
DOI URL |
[140] | 李英年, 薛晓娟, 王建雷, 等. 典型高寒植物生长繁殖特征对模拟气候变化的短期响应[J]. 生态学杂志, 2010, 29(4): 624-629. |
[141] |
ZHOU J J, XIANG J, WANG L Y, et al. The impacts of groundwater chemistry on wetland vegetation distribution in the northern Qinghai-Tibet Plateau[J]. Sustainability, 2019, 11(18),5022. DOI: 10.3390/su11185022.
DOI |
[142] | 环境保护部. 中国生物多样性保护战略与行动计划: 2011—2030年[M]. 北京: 中国环境科学出版社, 2011. |
[143] |
黎磊, 陈家宽. 气候变化对野生植物的影响及保护对策[J]. 生物多样性, 2014, 22(5): 549-563.
DOI |
[144] | 肖海龙, 盛茂银. 陆地森林植被植物细根对全球气候变化的响应研究进展[J]. 生态科学, 2020, 39(2): 199-206. |
[1] | YAO Yanling, WANG Yue, CHEN Quanliang, LIAO Yujing. Temporal and spatial variation characteristics of extreme precipitation in central and eastern Tibetan Plateau [J]. Journal of Arid Meteorology, 2023, 41(5): 714-722. |
[2] | GUO Yingxiang, FENG Xiaoli, LIU Chang, SHEN Hongyan, CHEN Haicun, LI Moyu. Characteristics of heavy snowfall in the Qinghai-Tibetan Plateau in early and late winter during 1961-2021 [J]. Journal of Arid Meteorology, 2023, 41(5): 723-733. |
[3] | LIANG Guohao, MAO Rui, SHAO Yaping, LI Xiaolan, GONG Daoyi. Research progress of convective turbulent dust emission [J]. Journal of Arid Meteorology, 2023, 41(4): 531-539. |
[4] | ZHANG Hongfang, ZHANG Xi, LIANG Jia, GUO Qi, WANG Jingzhong. Characteristics and influence factors of low visibility along Shaanxi section of the Lian-Huo expressway [J]. Journal of Arid Meteorology, 2023, 41(1): 82-90. |
[5] | CHEN Yanli, TANG Meirong, ZHANG Hui, MO Jianfei, QIAN Shuan. Response difference of fractional vegetation cover and net primary productivity to SPEI drought index in karst areas of Guangxi [J]. Journal of Arid Meteorology, 2022, 40(6): 1042-1050. |
[6] | FAN Jinjin, QIN Pengcheng, SHI Ruiqin, LI Mengrong, DU Liangmin. Characteristics of compound hot and drought disasters in Hubei under the background of climate change [J]. Journal of Arid Meteorology, 2022, 40(5): 780-790. |
[7] | TANG Guoying, LI Fengquan, WANG Ying, MA Li. Temporal and spatial distribution characteristics of cloud-to-ground lightning flashes in the northeastern verge of Tibetan Plateau from 2017 to 2020 [J]. Journal of Arid Meteorology, 2022, 40(5): 849-856. |
[8] | MA Mengmeng, ZUO Hongchao, LI Licheng, DUAN Jikai. Individual and joint influence of the Qinghai-Tibetan Plateau summer monsoon and boreal summer intraseasonal oscillation on drought and flood in rainy season of southwestern China [J]. Journal of Arid Meteorology, 2022, 40(4): 577-588. |
[9] | JIAO Yang, ZHANG Yongjing, YIN Chengmei, CHU Yingjia. Response of summer rainstorm in Shandong Province to change of spring atmospheric heat sources in southeastern Tibet Plateau and its adjacent areas [J]. Journal of Arid Meteorology, 2022, 40(3): 406-414. |
[10] | CEHN Xiaochen, TANG Zhenfei, CHEN Xikuan, ZHENG Chaoyu, LI Xinxin, YANG Ting. Projection of extreme temperature in Fujian based on CMIP6 output [J]. Journal of Arid Meteorology, 2022, 40(3): 415-423. |
[11] | GAO Hongyan,YANG Yanchao,ZHANG Xi,WANG Dan,CUI Yu,XIE Feng. Forecast Method of Daily Gas Load During Heating Period in Xi’an of Shaanxi Province [J]. Journal of Arid Meteorology, 2021, 39(5): 857-863. |
[12] | ZHANG Haihong, SHI Mingming WU Hao, QI Donglin, QUAN Chen. Cloud Water Resources Assessment in Qinghai Province Based on ERA-Interim Reanalysis Data [J]. Journal of Arid Meteorology, 2021, 39(4): 569-576. |
[13] | ZHANG Yachun, MA Yaoming, MA Weiqiang, WANG Binbin, WANG Yuyang, . Evapotranspiration Variation and Its Correlation with Meteorological Factors on Different Underlying Surfaces of the Tibetan Plateau [J]. Journal of Arid Meteorology, 2021, 39(3): 366-373. |
[14] | WU Bin, QIAN Ye, WANG Ruifang, ZHAO Xin, JIN Lei. Assessment of Largescale Environmental Factors Affecting Typhoon Intensity in Northwest Pacific Simulated by Global Climate Models [J]. Journal of Arid Meteorology, 2021, 39(3): 466-479. |
[15] | ZHENG Ran, LIU Jiahuimin, WANG Chunxue, LI Dongliang, TANG Hongyu, LIU Bo. Anomaly of Autumn Rain in the South Area of West China and Its Response to Atmospheric Cold Sources over the Tibetan Plateau in Winter [J]. Journal of Arid Meteorology, 2021, 39(2): 225-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com