Journal of Arid Meteorology ›› 2022, Vol. 40 ›› Issue (2): 169-178.DOI: 10.11755/j.issn.1006-7639(2022)-02-0169
• Articles • Previous Articles Next Articles
AN Linli(), HUANG Jianping(
), REN Yu, ZHANG Guolong
Received:
2021-09-24
Revised:
2021-12-09
Online:
2022-04-30
Published:
2022-05-10
Contact:
HUANG Jianping
通讯作者:
黄建平
作者简介:
安琳莉(1997— ),四川成都人,硕士生,主要从事气候变化研究. E-mail: anll15@lzu.edu.cn。
基金资助:
CLC Number:
AN Linli, HUANG Jianping, REN Yu, ZHANG Guolong. Characteristic and cause analysis of terrestrial water storage change in drylands of northern China[J]. Journal of Arid Meteorology, 2022, 40(2): 169-178.
安琳莉, 黄建平, 任钰, 张国龙. 中国北方旱区陆地水储量变化特征及其归因分析[J]. 干旱气象, 2022, 40(2): 169-178.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2022)-02-0169
Fig.2 Spatial distribution of climate tendency rate of TWS (Unit: mm·a-1) and time series of deseasonalized TWS regional total amount anomaly from April 2002 to July 2020 in drylands of northern China based on JPL-M (a, b), JPL-SH (c, d), CSR-M (e, f) and CSR-M (g, h) products (Black dots in the maps denote the regions where the climate tendency rate of TWS passed the 0.05 significance test (the same as below))
Fig.4 Spatial distribution of climate tendency rate (Unit: mm·a-1) of groundwater (a), root zone soil moisture (b) and surface soil moisture (c) from February 2003 to July 2020 in drylands of northern China and time series of regional total anomaly (d)
Fig.5 The spatial distribution of difference in the average annual precipitation between the period of 2002-2020 and the period of 1980-2020 (a, Unit: mm), the difference as a percentage of the average annual precipitation during 1980-2020 (b, Unit: %) and the inter-annual variation of average precipitation during 1980-2020 (c) in drylands of northern China
Fig.7 The spatial distribution of difference of the average annual evapotranspiration between the period of 2002-2020 and the period of 1980-2020 (a, Unit: mm), the difference as a percentage of the average annual evapotranspiration during 1980-2020 (b) and the inter-annual variation of average evapotranspiration during 1980-2020 (c) in drylands of northern China
Fig.9 The spatial distribution of difference of the average annual human water consumption between the period of 2002-2016 and the period of 1980-2016 (a, Unit: mm) and the inter-annual variation of average human water consumption during 1980-2016 (b) in drylands of northern China
[1] |
RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7707):651-659.
DOI URL |
[2] |
WANG J, SONG C, REAGER J T, et al. Recent global decline in endorheic basin water storages[J]. Nature Geoscience, 2018, 11(12):926-932.
DOI URL |
[3] |
ZEMP M, HUSS M, THIBERT E, et al. Global glacier mass changes and their contributions to sealevel rise from 1961 to 2016[J]. Nature, 2019, 568(7752):382-386.
DOI URL |
[4] |
WADA Y, VAN BEEK L P H, VAN KEMPEN C M, et al. Global depletion of groundwater resources[J]. Geophysical Research Letters 2010, 37(20),L20402. DOI: 10.1029/2010GL044571.
DOI |
[5] |
PEKEL J-F, COTTAM A, GORELICK N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
DOI URL |
[6] |
ZHAO Q, ZHANG B, YAO Y, et al. Geodetic and hydrological measurements reveal the recent acceleration of groundwater depletion in North China Plain[J]. Journal of Hydrology, 2019, 575:1065-1072.
DOI URL |
[7] |
TANGDAMRONGSUB N, HAN S C, TIAN S Y, et al. Evaluation of groundwater storage variations estimated from GRACE data assimilation and state-of-the-art land surface models in Australia and the North China Plain[J]. Remote Sensing, 2018, 10(3),483. DOI: 10.3390/rs10030483
DOI URL |
[8] |
RODELL M, VELICOGNA I, FAMIGLIETTI J S. Satellite-based estimates of groundwater depletion in India[J]. Nature, 2009, 460(7258):999-1002.
DOI URL |
[9] |
VOROSMARTY C J, MCINTYRE P B, GESSNER M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315):555-561.
DOI URL |
[10] | 张强, 赵映东, 张存杰, 等. 西北干旱区水循环与水资源问题[J]. 干旱气象, 2008, 26(2):1-8. |
[11] |
HUANG Q, ZHANG Q, XU C Y, et al. Terrestrial water storage in China: spatiotemporal pattern and driving factors[J]. Sustainability, 2019, 11(23):6646.
DOI URL |
[12] | XU L, CHEN N, ZHANG X, et al. Spatiotemporal changes in China’s terrestrial water storage from GRACE satellites and its possible drivers[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22):11 976-11 993. |
[13] |
WANG X, XIAO X, ZOU Z, et al. Gainers and losers of surface and terrestrial water resources in China during 1989-2016[J]. Nature Communications, 2020, 11(1):3471. DOI: 10.10138/s41467-020-17103-w.
DOI URL |
[14] | 郭瑞霞, 管晓丹, 张艳婷. 我国荒漠化主要研究进展[J]. 干旱气象, 2015, 33(3):505-514. |
[15] |
LI Y, HUANG J, JI M, et al. Dryland expansion in northern China from 1948 to 2008[J]. Advances in Atmospheric Sciences, 2015, 32(6):870-876.
DOI URL |
[16] | 柏庆顺, 颜鹏程, 蔡迪花, 等. 近56 a中国西北地区不同强度干旱的年代际变化特征[J]. 干旱气象, 2019, 37(5):722-728. |
[17] | 金红梅, 乔梁, 颜鹏程, 等. 基于近似熵的中国西北地区干旱的非线性特征[J]. 干旱气象, 2019, 37(5):713-721. |
[18] | 冯蜀青, 王海娥, 柳艳香, 等. 西北地区未来10 a气候变化趋势模拟预测研究[J]. 干旱气象, 2019, 37(4):557-564. |
[19] |
AESCHBACH-HERTIG W, GLEESON T. Regional strategies for the accelerating global problem of groundwater depletion[J]. Nature Geoscience, 2012, 5(12):853-861.
DOI URL |
[20] |
DALIN C, WADA Y, KASTNER T, et al. Groundwater depletion embedded in international food trade[J]. Nature, 2017, 543(7647):700-704.
DOI URL |
[21] | AN L, WANG J, HUANG J, et al. Divergent causes of terrestrial water storage decline between drylands and humid regions globally[J/OL]. Geophysical Research Letters, 2021, 48(23), e2021GL095035. https://doi.org/10.1029/2021GL095035 |
[22] | MO X, WU J J, WANG Q, et al. Variations in water storage in China over recent decades from GRACE observations and GLDAS[J/OL]. Natural Hazards and Earth System Sciences, 2016, 16(2):469-482. |
[23] |
MENG F, SU F, LI Y, et al. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(6):2909-2931.
DOI URL |
[24] |
TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683):503-505.
DOI URL |
[25] | FENG S, FU Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13(19):10 081-10 094. |
[26] |
HUANG J, YU H, GUAN X, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2):166-171.
DOI URL |
[27] |
WIESE D N, LANDERER F W, WATKINS M M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution[J]. Water Resources Research, 2016, 52(9):7490-7502.
DOI URL |
[28] |
SAVE H, BETTADPUR S, TAPLEY B D. High-resolution CSR GRACE RL05 mascons[J]. Journal of Geophysical Research-Solid Earth, 2016, 121(10):7547-7569.
DOI URL |
[29] |
GHIGGI G, HUMPHREY V, SENEVIRATNESI, et al. GRUN: an observation-based global gridded runoff dataset from 1902 to 2014[J]. Earth System Science Data, 2019, 11(4):1655-1674.
DOI URL |
[30] |
SCHMIED H M, CÁCERES D, EISNER S, et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation[J]. Geoscientific Model Development, 2021, 14(2):1037-1079.
DOI URL |
[31] |
SCANLON B R, ZHANG Z, RATEB A, et al. Tracking seasonal fluctuations in land water storage using global models and GRACE Satellites[J]. Geophysical Research Letters, 2019, 46(10):5254-5264.
DOI URL |
[32] | 陈坤, 蒋卫国, 何福红, 等. 基于GRACE数据的中国水储量变化特征分析[J]. 自然资源学报, 2018, 33(2):275-286. |
[33] |
OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790):1068-1072.
DOI URL |
[34] |
PASCOLINI-CAMPBELL M, REAGER J T, CHANDANPURKAR H A, et al. A 10 per cent increase in global land evapotranspiration from 2003 to 2019[J]. Nature, 2021, 593(7860):543-547.
DOI URL |
[35] |
HUANG J, YU H, DAI A, et al. Drylands face potential threat under 2 ℃ global warming target[J]. Nature Climate Change, 2017, 7(6):417-422.
DOI URL |
[36] |
WADA Y, FLORKE M, HANASAKI N, et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches[J]. Geoscientific Model Development, 2016, 9(1):175-222.
DOI URL |
[37] |
GRIEBLER C, AVRAMOV M. Groundwater ecosystem services: a review[J]. Freshwater Science, 2015, 34(1):355-367.
DOI URL |
[38] | BIERKENS M F P, WADA Y. Non-renewable groundwater use and groundwater depletion: a review[J]. Environmental Research Letters, 2019, 14(6):43. |
[39] |
李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40(4):1180-1194.
DOI |
[40] | BRUN F, BERTHIER E, WAGNON P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017(10):668-673. |
[41] |
HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856):726-731.
DOI URL |
[1] | LOU Dejun, LI Yongsheng, WANG Yongguang, CHEN Chen, ZHANG Jian. Preliminary study on the causes of extremely less precipitation in Heilongjiang Province in July 2020 [J]. Journal of Arid Meteorology, 2022, 40(3): 396-405. |
[2] | ZHENG Linye, CHEN Yun, FENG Tian, YAO Mengying. Precipitation characteristics of typhoons landfall in East China [J]. Journal of Arid Meteorology, 2022, 40(3): 424-435. |
[3] | WANG Junchao, WANG Zhibin, LAI Anwei, XIAO Yanjiao, WANG Jue. Experimental study on short-term and impending prediction of precipitation echo based on blending method of numerical prediction and radar extrapolation prediction [J]. Journal of Arid Meteorology, 2022, 40(3): 485-499. |
[4] | JI Xueshuai, WANG Lijing, GUO Hong, KANG Bosi, HUANG Shanjiang, ZHANG Xidan, GUO Xuhui. Analysis of characteristics of precipitation phase during a rain-snow weather process in Zhangjiakou based on multi-source observation data [J]. Journal of Arid Meteorology, 2022, 40(3): 507-515. |
[5] | GAO Jianqiu, ZHENG Bin, YOU Jiping, HE Songwei, YU Xiaojia, YANG Bocheng. Assessment and development analysis of air water substances in Guangdong in 2018 [J]. Journal of Arid Meteorology, 2022, 40(3): 516-523. |
[6] | CHEN Xiaoyan, KONG Xiangwei, PENG Xiao, LIU Xinwei, WU Jing, REN Shuyuan. Verification and assessment of precipitation forecast based on global and regional numerical models in Gansu in flood season of 2020 [J]. Journal of Arid Meteorology, 2022, 40(3): 524-535. |
[7] | QIAN Yong, QIU Guiqiang, ZHANG Huaming, LI Qiang, CUI Lei, LI Yunfei. Application of multi-source meteorological data in lightning-attributed forest fire identification [J]. Journal of Arid Meteorology, 2022, 40(3): 536-543. |
[8] | ZHAO Wen, WANG Chenghai, ZHANG Qiang, YUE Ping, ZHAO Ning, DU Lili. Revised radar precipitation prediction based on ground clutter filter by using the SRTM data [J]. Journal of Arid Meteorology, 2022, 40(2): 296-307. |
[9] | LI Tao, CHEN Jie, WANG Fang, HAN Rui. A correction algorithm of summer precipitation prediction based on neural network in China [J]. Journal of Arid Meteorology, 2022, 40(2): 308-316. |
[10] | HUANG Chuhui, NIU Jinlong, LI Guoping, CHEN Chaoping, XIAO Dixiang, ZHANG Ping. Correction method of precipitation in steep terrain transition zone forecasted based on southwest center WRF ADAS real-time modeling system [J]. Journal of Arid Meteorology, 2022, 40(2): 317-326. |
[11] | SHEN Xiaoyan, SHEN Yanling, QUAN Chen, DU Huali, YAN Yuqian. Verification and comparison of different methods to prediction performance of model products during the heavy precipitations in 2020 in Qinghai Province [J]. Journal of Arid Meteorology, 2022, 40(2): 333-343. |
[12] | HU Zhenju, LI Lu, HUANG Xiaoyu, HE Binwen, YE Rixin. Analysis of mechanism of topographic influence and meso-scale convective characteristics of an extremely severe rainfall affected by typical easterly wave [J]. Journal of Arid Meteorology, 2022, 40(1): 73-83. |
[13] | LIU Na, HUANG Wubin, YANG Jiancai, WANG Jixin, WANG Yicheng, ZHANG Junxia. Objective forecast method of short-term quantitative precipitation in Gansu Province based on SCTP-RF algorithm [J]. Journal of Arid Meteorology, 2022, 40(1): 146-155. |
[14] | CHEN Ying, ZHANG Dongfeng, WANG Lin, LIU Yueli, WANG Dayong. Estimation of climate change in the 21st century in North China by RegCM4 [J]. Journal of Arid Meteorology, 2022, 40(1): 1-10. |
[15] | LI Rong, LIU Xinwei, WEI Dong, DUAN Haixia, DUAN Bolong, LI Jiarui, DI Xiaohong. Refined characteristics of precipitation in Lanzhou based on regional automatic weather stations data [J]. Journal of Arid Meteorology, 2022, 40(1): 55-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com