Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (3): 488-497.DOI: 10.11755/j.issn.1006-7639-2025-03-0488

• Technical Reports • Previous Articles     Next Articles

Wire icing thickness prediction model of transmission line in the northeastern slope region of Qinghai-Xizang Plateau based on random forest algorithm

LYU Meixia(), YAN Xinyang, HE Jinmei(), CHENG Peng, WANG Xiaoyong, LI Xiaoqin   

  1. Meteorological Service Center of Gansu Province, Lanzhou 730020, China
  • Received:2024-05-14 Revised:2025-04-01 Online:2025-06-30 Published:2025-07-12

基于随机森林算法的青藏高原东北边坡输电线路覆冰厚度预报模型

吕玫霞(), 闫昕旸, 何金梅(), 程鹏, 王小勇, 李晓琴   

  1. 甘肃省气象服务中心,甘肃 兰州 730020
  • 通讯作者: 何金梅
  • 作者简介:吕玫霞(1995—),女,甘肃武威人,硕士,主要从事专业气象预报服务工作。E-mail: 957985776@qq.com
  • 基金资助:
    甘肃省自然科学基金项目(23JRRA1574);甘肃省青年科技基金计划(24JRRA1186);及甘肃省气象局重点项目(Zd2022-04)

Abstract:

Wire icing is one of the important factors endangering the safe operation of power grid in northeastern slope region of Qinghai-Xizang Plateau. It is of great significance to study the temporal and spatial variation characteristics of transmission line icing and establish the icing forecasting model for the power department to remove ice and prevent ice damage. Based on the random forest algorithm, a regression model of the correlation between maximum equivalent ice thickness and meteorological elements was trained by using the cases of transmission line icing in northeastern slope region of Qinghai-Xizang Plateau from 2019 to 2022 provided by the power department, combined with the meteorological monitoring data along the icing cases, and the model was evaluated. The results show that transmission line icing accidents are mainly distributed in Gannan Plateau, Plateau of middle Gansu, Plateau of eastern Gansu, and Longnan mountainous area, and icing accidents occurred frequently in winter. The number of trees and features and the minimum number of leaves in the decision tree of the random forest regression model were adjusted to improve the prediction accuracy of the model. The relative humidity and the precipitation in the past 24 hours have great influence on transmission line icing in each geographical area. The mean absolute errors of the training set of maximum equivalent ice thickness prediction model of transmission line trained by random forest are all less than 2.8 mm, and the coefficient of determination R2 is above 0.7. Therefore, the random forest model can predict the maximum equivalent ice thickness of transmission lines in the northeastern slope region of Qinghai-Xizang Plateau and realize short-term forecast, reduce the economic loss caused by transmission line icing in power grid.

Key words: transmission line icing, temporal and spatial change characteristics, random forest, evaluation of prediction result

摘要: 电线覆冰是危害青藏高原东北边坡地区输电线路安全运行的重要因素之一,研究区域内输电线路覆冰时空变化特征,建立覆冰预报模型,对电力部门融冰除冰及冰害防御有重要意义。基于随机森林算法,利用电力部门提供的2019-2022年青藏高原东北边坡地区输电线路覆冰个例,结合覆冰个例沿线气象实况监测资料,训练出最大等值覆冰厚度与气象要素间相关性的回归模型,并对模型进行评价。结果表明:覆冰线路主要分布在甘南高原、陇中高原、陇东高原及陇南山区地带,冬季覆冰事件频发;通过调整随机森林回归模型决策树的棵数、特征个数及最小叶子数可以有效提高模型预测精度;相对湿度、过去24 h降水量对各地理分区导线覆冰有较大影响;随机森林训练出的分区域输电线路最大等值覆冰厚度模型训练集平均绝对误差均小于2.8 mm,决定系数R2>0.7。随机森林模型能够预测青藏高原东北边坡地区输电线路最大等值覆冰厚度,可实现输电线路覆冰的短期预报。

关键词: 输电线路覆冰, 时空变化, 随机森林, 预报效果评估

CLC Number: