Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (6): 965-975.DOI: 10.11755/j.issn.1006-7639-2024-06-0965
• Articles • Previous Articles Next Articles
CHEN Qiao1,2(), WANG Bing3, XIONG Kun4, MAO Yangyang1,2, YU Weidong1,2(
)
Received:
2023-07-28
Revised:
2023-10-09
Online:
2024-12-31
Published:
2025-01-15
陈巧1,2(), 王冰3, 熊坤4, 毛洋洋1,2, 余卫东1,2(
)
通讯作者:
余卫东(1972—),男,河南商丘人,正高级工程师,主要从事气候资源利用及农业减灾研究。E-mail:himsywd2021@163.com。
作者简介:
陈巧(1983—),女,四川成都人,高级工程师,主要从事气象服务研究。E-mail:chenqiao56@126.com。
基金资助:
CLC Number:
CHEN Qiao, WANG Bing, XIONG Kun, MAO Yangyang, YU Weidong. Analysis of agricultural climatic resources change of high quality wheat in Henan Province under future climate scenarios[J]. Journal of Arid Meteorology, 2024, 42(6): 965-975.
陈巧, 王冰, 熊坤, 毛洋洋, 余卫东. 未来气候情景下河南省优质小麦农业气候资源变化分析[J]. 干旱气象, 2024, 42(6): 965-975.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2024-06-0965
气候因子 | 地理模型 | R | F |
---|---|---|---|
全生育期降水量(P) | P=22.21x-81.81y+0.137H+509.25 | 0.950 | 337.18** |
全生育期≥0 ℃积温(G) | G=-55.07x-100.81y-0.766H+12 125.91 | 0.866 | 109.44** |
3—4月辐射总量(S3—4) | S3—4=142.13x+484.64y+0.68H-21 324.67 | 0.883 | 128.41** |
3—4月雨日(D3—4) | D3—4=0.28x-2.98y+0.007H+82.58 | 0.966 | 510.85** |
5月降水量(R5) | R5=4.35x-17.18y+0.029H+154.56 | 0.911 | 176.52** |
5月气温日较差平均值(T5) | T5=-0.2x+0.656y+0.000 3H+12.4 | 0.806 | 67.42** |
5月日最高气温≥32 ℃天数(D32) | D32=-0.66x+0.123y-0.004 9H+75.09 | 0.676 | 30.55* |
5月辐射总量(S5) | S5=47.45x+315.78y+0.27H-10 070.2 | 0.917 | 191.17** |
Tab.1 Geographical estimation model of agricultural climate index in Henan Province
气候因子 | 地理模型 | R | F |
---|---|---|---|
全生育期降水量(P) | P=22.21x-81.81y+0.137H+509.25 | 0.950 | 337.18** |
全生育期≥0 ℃积温(G) | G=-55.07x-100.81y-0.766H+12 125.91 | 0.866 | 109.44** |
3—4月辐射总量(S3—4) | S3—4=142.13x+484.64y+0.68H-21 324.67 | 0.883 | 128.41** |
3—4月雨日(D3—4) | D3—4=0.28x-2.98y+0.007H+82.58 | 0.966 | 510.85** |
5月降水量(R5) | R5=4.35x-17.18y+0.029H+154.56 | 0.911 | 176.52** |
5月气温日较差平均值(T5) | T5=-0.2x+0.656y+0.000 3H+12.4 | 0.806 | 67.42** |
5月日最高气温≥32 ℃天数(D32) | D32=-0.66x+0.123y-0.004 9H+75.09 | 0.676 | 30.55* |
5月辐射总量(S5) | S5=47.45x+315.78y+0.27H-10 070.2 | 0.917 | 191.17** |
Fig.2 The spatial distribution of average accumulated temperature more than 0 ℃ (a, c) (Unit: ℃·d) and its climatic tendency rate (b, d) (Unit: ℃·d·(10 a)-1) during the whole growth period of winter wheat under RCP4.5 (a, b) and RCP8.5 (c, d) scenarios from 2021 to 2050 (The circles indicate that the climate tendency rate is above the significance level of α=0.05, the same as below)
Fig.3 The spatial distribution of mean diurnal temperature range in May (a, c) (Unit: ℃) and it’s tendency rate (b, d) (Unit: ℃·(10 a)-1) under RCP4.5 (a, b) and RCP8.5 (c, d) scenarios from 2021 to 2050
Fig.4 The spatial distribution of days of daily maximum temperature more than or equal to 32 ℃ in May (a, c) (Unit: d) and it’s tendency rate (b, d) (Unit: d·(10 a)-1) under RCP4.5 (a, b) and RCP8.5 (c, d) scenarios from 2021 to 2050
Fig.5 The spatial distribution of precipitation during the growth period of winter wheat (a, c) (Unit: mm) and it’s tendency rate (b, d) (Unit: mm·(10 a)-1) under RCP4.5 (a, b) and RCP8.5 (c, d) scenarios from 2021 to 2050
Fig.6 The spatial distribution of rain days from March to April (a, c) (Unit: d) and it’s tendency rate (b, d) (Unit: d·(10 a)-1) under RCP4.5 (a, b) and RCP8.5 (c, d) scenarios from 2021 to 2050
Fig.7 The spatial distribution of precipitation in May (a, c) (Unit: mm) and it’s tendency rate (b, d) (Unit: mm·(10 a)-1) under RCP4.5 (a, b) and RCP8.5 (c, d) scenarios from 2021 to 2050
Fig.8 The spatial distribution of solar energy flux from March to April (a, c) (Unit: W·m-2) and it’s tendency rate (b, d) (Unit: W·m-2·(10 a)-1) under RCP4.5 (a, b) and RCP8.5 (c, d) scenarios from 2021 to 2050
Fig.9 The spatial distribution of solar energy flux in May (a, c) (Unit: W·m-2) and it’s tendency rate (b, d) (Unit: W·m-2·(10 a)-1) under RCP4.5 (a, b) and RCP8.5 (c, d) scenarios from 2021 to 2050
[1] | 白磊, 张帆, 尚明, 等, 2021. 基于格点数据的1961—2018年中国多种积温时空变化研究[J]. 地球信息科学学报, 23(8): 1 446-1 460 |
[2] | 曹广才, 王绍中, 1994. 小麦品质生态[M]. 北京: 中国科学技术出版社. |
[3] |
陈惺, 王军邦, 何启凡, 等, 2023. 未来气候情景下中国植被经初级生产力稳定性及气候影响[J]. 地理学报, 78(3): 694-713.
DOI |
[4] | 褚荣浩, 申双和, 吕厚荃, 等, 2015. 气候变化情景下黄淮海冬麦区农业气候资源变化特征[J]. 科学技术与工程, 15(26): 1-10. |
[5] | 范泽孟, 岳天祥, 陈传法, 等, 2012. 中国降水未来情景的降尺度模拟[J]. 地理研究, 31(12): 2 283-2 291 |
[6] | 郭佳, 张宝林, 高聚林, 等, 2019. 气候变化对中国农业气候资源及农业生产影响的研究进展[J]. 北方农业学报, 47(1): 105-113. |
[7] | 国家统计局农村社会经济调查司, 2022. 中国农村统计年鉴[M]. 北京: 中国统计出版社. |
[8] | 郝振纯, 李丽, 徐毅, 等, 2009. 区域气候情景Delta-DCSI降尺度方法[J]. 四川大学学报:工程科学版, 41(5): 1-7. |
[9] | 何亮, 毛留喜, 2023. 气候变化背景下东北大豆种植区气候适宜性变化[J]. 中国生态农业学报:中英文, 31(5): 690-698. |
[10] | 黄先锋, 王胜兰, 赵开军, 2010. 1961—2008年新疆奎屯垦区农业气候资源变化分析[J]. 沙漠与绿洲气象, 4(2): 54-58. |
[11] |
姬兴杰, 徐延红, 左璇, 等, 2020. 未来气候变化情景下河南省粮食安全气候承载力评估[J]. 应用生态学报, 31(3): 853-862.
DOI |
[12] | 江志红, 丁裕国, 马婷婷, 等, 2012. 气候极值推断的不确定性及其置信区间初步探讨[J]. 气象学报, 70(6): 1 327-1 333 |
[13] | 李萌, 申双和, 褚荣浩, 等, 2016. 近30年中国农业气候资源分布及其变化趋势分析[J]. 科学技术与工程, 16(21): 1-11. |
[14] | 李文旭, 吴政卿, 雷振生, 等, 2021. 河南省主要气象因子变化及其对主要粮食作物单产的影响特征[J]. 作物杂志(1): 124-134. |
[15] | 林忠辉, 莫兴国, 李宏轩, 等, 2002. 中国陆地区域气象要素的空间插值[J]. 地理学报, 57(1): 47-56. |
[16] | 刘绿柳, 魏麟骁, 徐影, 等, 2021. 气候变化对黄河流域生态径流影响预估[J]. 水科学进展, 32(6): 824-833. |
[17] |
刘玉洁, 陶福禄, 2012. 气候变化对小麦生物量影响的概率预测和不确定性分析[J]. 地理学报, 67(3): 337-345.
DOI |
[18] | 罗海平, 邹楠, 胡学英, 等, 2021. 1980—2019年中国粮食主产区主要粮食作物气候生产潜力与气候资源利用效率[J]. 资源科学, 43(6): 1 234-1 247 |
[19] | 马雪晴, 和骅芸, 赵金媛, 等, 2023. 1961—2020年中国小麦生长季干湿时空变化分析[J]. 中国生态农业学报:中英文, 31(4): 608-618. |
[20] | 苏芳, 刘钰, 汪三贵, 等, 2022. 气候变化对中国不同粮食产区粮食安全的影响[J]. 中国人口·资源与环境, 32(8): 140-152. |
[21] | 谭凯炎, 周广胜, 任三学, 等, 2019. 气候变化可能不会引起我国北方冬小麦营养品质下降[J]. 气候变化研究进展, 15(3): 282-289. |
[22] | 童尧, 高学杰, 韩振宇, 等, 2017. 基于RegCM4模式的中国区域日尺度降水模拟误差订正[J]. 大气科学, 41(6): 1 156-1 166 |
[23] | 王鹤龄, 张强, 王润元, 等, 2015. 增温和降水变化对西北半干旱区春小麦产量和品质的影响[J]. 应用生态学报, 26(1): 67-75. |
[24] | 王均, 李广, 闫丽娟, 等, 2020. 旱地春小麦产量对不同生育阶段温度变化的响应模拟[J]. 中国农业科学, 53(5): 904-916. |
[25] | 王绍武, 罗勇, 赵宗慈, 等, 2012. 新一代温室气体排放情景[J]. 气候变化研究进展, 8(4): 305-307. |
[26] | 王绍中, 刘发魁, 张玲, 等, 1995. 小麦品质生态及品质区划研究Ⅲ.河南省小麦品质生态区划[J]. 河南农业科学, 24(12): 3-9. |
[27] | 王跃山, 1995. 贝塞尔插值及其在数值预报中的应用[J]. 海洋预报, 12(2): 12-17. |
[28] | 徐延红, 李树岩, 2019. 气候变化对河南省小麦和玉米气候资源利用效率的影响[J]. 干旱地区农业研究, 37(5): 218-225. |
[29] | 杨晓光, 李勇, 代姝玮, 等, 2011. 气候变化背景下中国农业气候资源变化 Ⅸ.中国农业气候资源时空变化特征[J]. 应用生态学报, 22(12): 3 177-3 188 |
[30] | 杨绚, 汤绪, 陈葆德, 等, 2014. 利用CMIP5多模式集合模拟气候变化对中国小麦产量的影响[J]. 中国农业科学, 47(15): 3 009-3 024 |
[31] | 于振文, 2006. 小麦产量与品质生理及栽培技术[M]. 北京: 中国农业出版社. |
[32] | 余卫东, 杨君健, 2021. 河南省优质小麦适宜种植区及未来变化趋势[J]. 中国农业大学学报, 26(9): 42-51. |
[33] | 余卫东, 赵国强, 陈怀亮, 2007. 气候变化对河南省主要农作物生育期的影[J]. 中国农业气象, 28(1): 9-12. |
[34] | 张梦婷, 张玉静, 佟金鹤, 等, 2017. 未来气候情景下冬小麦潜在北移区农业气候资源变化特征[J]. 气候变化研究进展, 13(3): 243-252. |
[35] | 赵娅君, 郑粉莉, 姚亚庆, 等, 2022. 1978—2018年我国农业气象灾害时空变化特征[J]. 自然灾害学报, 31(1): 198-207. |
[36] | CHEN Y, MAREK G W, MAREK T H, et al, 2019. Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model[J]. Agricultural Water Management, 221: 13-24. |
[37] | GAO X J, WANG M L, GIORGI F, 2013. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0[J]. Atmospheric and Oceanic Science Letters, 6(5): 381-386. |
[38] | KATE R W, BRUSH G S, PARLANGE M B, 2005. Statistics of extremes: Modeling ecological disturbances[J]. Rcology, 86(5): 1 124-1 134 |
[39] | LUCK J, SPACKMAN M, FREEMAN A, et al, 2011. Climate change and diseases of food crops[J]. Plant Pathology, 60(1): 113-121. |
[40] | LIAQAT W, BARUTCULAR C, FAROOQ M U, et al, 2022. Climate change in relation to agriculture:A review[J]. Spanish Journal of Agricultural Research, 20(2): 1-15. |
[41] | SMITH W N, GRANT B B, DESJARDINS R L, et al, 2013. Assessing the effects of climate change on crop production and GHG emissions in Canada[J]. Agriculture, ecosystems & environment, 179: 139-150. |
[42] | SMIKA D E, GREB B W, 1973. Protein content of winter wheat grain as related to soil and climatic factors in the semi-arid Central Great Plains[J]. Agronomy Journal, 65: 433-436. |
[43] | TAO F L, YOKOZAWA M, LIU J Y, et al, 2008. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends[J]. Climate Research, 38: 83-94. |
[44] | WU J, GAO X J, XU Y L, et al, 2015. Regional climate change and uncertainty analysis based on four regional climate model simulations over China[J]. Atmospheric and Oceanic Science Letters, 8(3): 147-152. |
[1] | XIE Ziyang, LI Changshun, CAI Jiayi, WANG Shanshan. Bibliometric analysis and visualization of the relationship between climate change and soil moisture from 1988 to 2023 [J]. Journal of Arid Meteorology, 2024, 42(6): 953-964. |
[2] | YANG Fei, FENG Xiang, ZHANG Feimin, WANG Chenghai. Characteristics of vegetation change and its relationship with climate in the Qilian Mountains over the past 40 years [J]. Journal of Arid Meteorology, 2024, 42(3): 385-394. |
[3] | CAO Xiaoyun, ZHOU Bingrong, ZHOU Huakun, QIAO Bin, YAN Yuqian, ZHAO Tong, CHEN Qi, ZHAO Huifang, YU Hongyan. Research progress on the impact of climate change on vegetation ecosystem in the Tibetan Plateau [J]. Journal of Arid Meteorology, 2022, 40(6): 1068-1080. |
[4] | FAN Jinjin, QIN Pengcheng, SHI Ruiqin, LI Mengrong, DU Liangmin. Characteristics of compound hot and drought disasters in Hubei under the background of climate change [J]. Journal of Arid Meteorology, 2022, 40(5): 780-790. |
[5] | CEHN Xiaochen, TANG Zhenfei, CHEN Xikuan, ZHENG Chaoyu, LI Xinxin, YANG Ting. Projection of extreme temperature in Fujian based on CMIP6 output [J]. Journal of Arid Meteorology, 2022, 40(3): 415-423. |
[6] | WU Bin, QIAN Ye, WANG Ruifang, ZHAO Xin, JIN Lei. Assessment of Largescale Environmental Factors Affecting Typhoon Intensity in Northwest Pacific Simulated by Global Climate Models [J]. Journal of Arid Meteorology, 2021, 39(3): 466-479. |
[7] | LIU Mingyan, FANG Yihe, SUN Fenghua, ZHAO Chunyu, HOU Yiling, CUI Yan, ZHOU Xiaoyu. Contributions of Climate Changes and Human Activities to Runoff Change in the Taizihe Basin [J]. Journal of Arid Meteorology, 2021, 39(2): 244-251. |
[8] | ZHAO Lin, WANG Changke, AI Wanxiu. Analysis of Gender Differences in Public Perception and Adaptation to Climate Change in Northern Xinjiang [J]. Journal of Arid Meteorology, 2021, 39(1): 168-174. |
[9] | HAO Hui, GUO Qingyuan, MA Pengcheng, WANG Lina, LIU Liwei, LIU Weiping, LI Changde. Characteristics of Extreme Low Temperature Events in Southeast of Gansu Province in Recent 50 Years and Their Circulation Background [J]. Journal of Arid Meteorology, 2020, 38(6): 900-908. |
[10] | LIU Chuwei, LIAN Xinbo, HUANG Jianping. Research Review on the Spatio-temporal Distribution of Ozone Pollution and Its Causes in China [J]. Journal of Arid Meteorology, 2020, 38(03): 355-361. |
[11] | SUN Yinchuan1,2, WANG Suyan1,2, LI Hao3, ZHENG Guangfen2, WANG Fan2, GUAN Jingde1. Effect Analysis of Climate Change on Summer Tourism Climate Comfortableness in Liupan Mountain Areas of Ningxia [J]. Journal of Arid Meteorology, 2018, 36(6): 1035-. |
[12] | ZHANG Feimin, WANG Chenghai, XIE Guohui, KONG Weizheng. Projection of Global Wind and Solar Energy over Land Under Different Climate Change Scenarios During 2020-2030 [J]. Journal of Arid Meteorology, 2018, 36(5): 725-732. |
[13] | DILINUER Tuoliewubieke, LI Dongliang. Characteristics of the Dry/Wet Climate Change in Central Asia in Recent 115 Years [J]. Journal of Arid Meteorology, 2018, 36(2): 185-195. |
[14] | TENG Shuichang, ZHANG Min, TENG Jie, QIAO Qin. Climatic Change Characteristics in Wushaoling Region of Gansu Province During 1951-2016 [J]. Journal of Arid Meteorology, 2018, 36(1): 75-81. |
[15] | LI Yanli, LI Yonghua, CHEN Xinjun, YANG Wenbin. Variation Characteristics of Runoff into Danghe Reservoir and Its Response to Climate Change [J]. Journal of Arid Meteorology, 2017, 35(6): 984-990. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com