Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (5): 719-733.DOI: 10.11755/j.issn.1006-7639-2024-05-0719
• Special Column: Application of Artificial Intelligence in Drought Meteorology and Related Fields • Previous Articles Next Articles
MA Minjin(), CHEN Ran, CAO Yidan, ZHANG Xingyu, LI Yuebin
Received:
2024-04-17
Revised:
2024-07-09
Online:
2024-10-31
Published:
2024-11-17
作者简介:
马敏劲(1983—),男,云南昭通人,副教授,主要从事大气边界层数值模拟、气象领域的机器学习及应用、创新方法研究。E-mail: minjinma@lzu.edu.cn。
基金资助:
CLC Number:
MA Minjin, CHEN Ran, CAO Yidan, ZHANG Xingyu, LI Yuebin. Advances in convolutional neural networks and their applications in atmospheric science[J]. Journal of Arid Meteorology, 2024, 42(5): 719-733.
马敏劲, 陈然, 曹译丹, 张星宇, 李岳彬. 卷积神经网络研究进展及其在大气科学中的应用[J]. 干旱气象, 2024, 42(5): 719-733.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2024-05-0719
[1] | 曹春燕, 陈元昭, 刘东华, 等, 2015. 光流法及其在临近预报中的应用[J]. 气象学报, 73(3): 471-480. |
[2] | 陈锦鹏, 冯业荣, 黄奕丹, 等, 2024. 利用机器学习模拟湿物理参数化方案[J]. 气象学报, 82(1): 113-126. |
[3] | 陈锦鹏, 冯业荣, 蒙伟光, 等, 2021. 基于卷积神经网络的逐时降水预报订正方法研究[J]. 气象, 47(1): 60-70. |
[4] |
邓建国, 张素兰, 张继福, 等, 2020. 监督学习中的损失函数及应用研究[J]. 大数据, 6(1): 60-80.
DOI |
[5] | 樊许磊, 2022. 用于资料同化预处理的卷积神经网络亮温重映射技术[D]. 武汉: 华中科技大学. |
[6] | 洪思弟, 赖绍钧, 林志玮, 等, 2020. 结合深度卷积网络及光学图像的降雨强度识别[J]. 福建农林大学学报:自然科学版, 49(4): 567-576. |
[7] | 刘雅忱, 2020. 人工智能下深度学习在气象预报中应用综述[J]. 计算机产品与流通(11),121. |
[8] | 刘亚伟, 郭辰婧, 赵绘萍, 2021. 卷积神经网络的发展及其在肿瘤影像学中的应用[J]. 吉林医药学院学报, 42(4): 290-292. |
[9] |
孙书魁, 范菁, 孙中强, 等, 2024. 基于深度学习的图像数据增强研究综述[J]. 计算机科学, 51(1): 150-167.
DOI |
[10] |
魏森涛, 王澄海, 张飞民, 等, 2023. 基于土壤温、湿度记忆性的土壤湿度预测方法研究[J]. 干旱气象, 41(5): 783-791.
DOI |
[11] | 夏旻, 申茂阳, 王舰锋, 等, 2018. 基于卷积神经网络的卫星云图云量计算[J]. 系统仿真学报, 30(5): 1 623-1 630. |
[12] |
袁凯, 庞晶, 李武阶, 等, 2023. 深度学习模型在2021年汛期武汉市雷达回波临近预报中的应用评估[J]. 干旱气象, 41(1): 173-185.
DOI |
[13] | 袁雅涵, 王烁, 王文青, 等, 2023. 基于深度学习的积层混合云对流泡降水粒子特征研究[J]. 干旱气象, 41(6): 933-943. |
[14] | BADRINARAYANAN V, KENDALL A, CIPOLLA R, 2017. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2 481-2 495. |
[15] | BAÑO-MEDINA J, MANZANAS R, GUTIÉRREZ J M, 2020. Configuration and intercomparison of deep learning neural models for statistical downscaling[J]. Geoscientific Model Development, 13(4): 2 109-2 124. |
[16] | BARRON J T, 2017. Continuously differentiable exponential linear units[J/OL]. (2017-04-24)[2024-04-17]. https://arxiv.org/abs/1704.07483. |
[17] | BOEING G, 2016. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction[J]. Systems, 4(4): 37. DOI: 10.3390/systems4040037. |
[18] | BRAJARD J, CARRASSI A, BOCQUET M, et al, 2020. Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model[J]. Journal of Computational Science, 44: 101171. DOI: 10.1016/j.jocs.2020.101171. |
[19] | BYUN J, JUN C, KIM J, et al, 2023. Deep learning-based rainfall prediction using cloud image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 61: 1-11. DOI: 10.1109/TGRS.2023.3263872. |
[20] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al, 2018. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834-848. |
[21] | CLEVERT D A, UNTERTHINER T, HOCHREITER S, 2015. Fast and accurate deep network learning by exponential linear units (ELUs)[C/OL]// International Conference on Learning Representations (ICLR). Caribe Hilton, San Juan, Puerto Rico. (2015-11-23)[2024-04-17]. https://arxiv.org/abs/1511.07289. |
[22] | COHEN T S, GEIGER M, KOHLER J, et al, 2018. Spherical CNNs[J/OL]. (2018-01-30)[2024-04-17]. https://arxiv.org/abs/1801.10130. |
[23] | DAWOOD M, ASIF A, MINHAS F U A A, 2020. Deep-PHURIE: Deep learning based hurricane intensity estimation from infrared satellite imagery[J]. Neural Computing and Applications, 32(13): 9 009-9 017. |
[24] | DOZAT T, 2016. Incorporating nesterov momentum into Adam[C]// Proceedings of the 4th International Conference on Learning Representations (ICLR). San Juan, Puerto Rico. |
[25] | DUCHI J C, HAZAN E, SINGER Y, 2011. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 12: 2 121-2 159. |
[26] | ELHOSEINY M, HUANG S, ELGAMMAL A, 2015. Weather classification with deep convolutional neural networks[C]// IEEE. 2015 IEEE International Conference on Image Processing (ICIP). Quebec City, QC, Canada: IEEE: 3 349-3 353. |
[27] | FENG C, WANG W D, TIAN Y, et al, 2017. Estimate air quality based on mobile crowd sensing and big data[C]// IEEE. 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). Macau, China: IEEE: 1-9. |
[28] |
FUKUSHIMA K, 1980. Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 36(4): 193-202.
DOI PMID |
[29] | GAGNE D J, HAUPT S E, NYCHKA D W, et al, 2019. Interpretable deep learning for spatial analysis of severe hailstorms[J]. Monthly Weather Review, 147(8): 2 827-2 845. |
[30] | GIYENKO A, PALVANOV A, CHO Y, 2018. Application of convolutional neural networks for visibility estimation of CCTV images[C]// IEEE. 2018 International Conference on Information Networking (ICOIN). Chiang Mai, Thailand: IEEE: 875-879. |
[31] | GLOROT X, BORDES A, BENGIO Y, 2011. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 15: 315-323. |
[32] | GRÖNQUIST P, YAO C Y, BEN-NUN T, et al, 2021. Deep learning for post-processing ensemble weather forecasts[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194): 20200092. DOI: 10.1098/rsta.2020.0092. |
[33] | HAM Y G, KIM J H, LUO J J, 2019. Deep learning for multi-year ENSO forecasts[J]. Nature, 573(7775): 568-572. |
[34] | HAN L, CHEN M X, CHEN K K, et al, 2021. A deep learning method for bias correction of ECMWF 24-240 h forecasts[J]. Advances in Atmospheric Sciences, 38(9): 1 444-1 459. |
[35] | HE K M, SUN J, TANG X O, 2011. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12): 2 341-2 353. |
[36] | HE K M, ZHANG X Y, REN S Q, et al, 2015. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]// IEEE. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society: 1 026-1 034. |
[37] | HE K M, ZHANG X Y, REN S Q, et al, 2016. Deep residual learning for image recognition[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA: IEEE: 770-778. |
[38] |
HINTON G E, SALAKHUTDINOV R R, 2006. Reducing the dimensionality of data with neural networks[J]. Science, 313(5786): 504-507.
DOI PMID |
[39] | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al, 2012. Improving neural networks by preventing co-adaptation of feature detectors[J/OL]. (2012-07-03)[2024-07-09]. https://arxiv.org/abs/1207.0580. |
[40] | HOWARD A G, ZHU M, CHEN B, et al, 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications[J/OL]. (2017-04-17)[2024-04-17]. https://arxiv.org/abs/1704.04861. |
[41] | HUANG G, LIU Z, VAN DER MAATEN L, et al, 2017. Densely connected convolutional networks[C]// IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE: 2 261-2 269. |
[42] | HUBEL D H, WIESEL T N, 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. Journal of Physiology, 160(1): 106-154. |
[43] | JIANG Y H, CHENG W, GAO F, et al, 2022. A cloud classification method based on a convolutional neural network for FY-4A satellites[J]. Remote Sensing, 14(10): 2314. DOI: 10.3390/rs14102314. |
[44] | KINGMA D P, BA J, 2014. Adam: A method for stochastic optimization[C/OL]// International Conference on Learning Representations (ICLR). San Diego, CA, USA. (2014-12-22)[2024-04-17]. https://arxiv.org/abs/1412.6980. |
[45] | KLAMBAUER G, UNTERTHINER T, MAYR A, et al, 2017. Self-Normalizing neural networks[C/OL]// Neural Information Processing Systems (NIPS). Long Beach, CA, USA. (2017-09-07)[2024-04-17]. https://arxiv.org/abs/1706.02515. |
[46] | KOPP M, TUO Y, DISSE M, 2019. Fully automated snow depth measurements from time-lapse images applying a convolutional neural network[J]. Science of The Total Environment, 697: 134213. DOI: 10.1016/j.scitotenv.2019.134213. |
[47] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E, 2017. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60(6): 84-90. |
[48] | KURTH T, TREICHLER S, ROMERO J, et al, 2018. Exascale deep learning for climate analytics[C]// IEEE. SC18:International Conference for High Performance Computing, Networking, Storage and Analysis. Dallas, TX, USA: IEEE: 649-660. |
[49] | LAGERQUIST R, MCGOVERN A, GAGNE D J, 2019. Deep learning for spatially explicit prediction of synoptic-scale fronts[J]. Weather and Forecasting, 34(4): 1 137-1 160. |
[50] | LECUN Y, BENGIO Y, HINTON G, 2015. Deep learning[J]. Nature, 521(7553): 436-444. |
[51] | LECUN Y, BOTTOU L, BENGIO Y, et al, 1998. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86(11): 2 278-2 324. |
[52] | LI Y, MOMEN M, 2021. Detection of weather events in optical satellite data using deep convolutional neural networks[J]. Remote Sensing Letters, 12(12): 1 227-1 237. |
[53] | LIN M, CHEN Q, YAN S C, 2013. Network In Network[J/OL]. (2013-12-16)[2024-04-17]. https://arxiv.org/abs/1312.4400. |
[54] | LIU Y J, RACAH E, PRABHAT, et al, 2016. Application of deep convolutional neural networks for detecting extreme weather in climate datasets[J/OL]. (2016-05-04)[2024-04-17]. https://arxiv.org/abs/1605.01156. |
[55] | LIU Z M, WANG Y X, VAIDYA S, et al, 2024. KAN: Kolmogorov-Arnold Networks[J/OL]. (2024-06-16)[2024-04-17]. https://arxiv.org/abs/2404.19756. |
[56] | LIU Z, LIN Y T, CAO Y, et al, 2021. Swin transformer: Hierarchical vision transformer using shifted windows[C]// IEEE. International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE: 10 012-10 022. |
[57] | LONG J, SHELHAMER E, DARRELL T, 2015. Fully convolutional networks for semantic segmentation[C]// IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE: 3 431-3 440. |
[58] | LU C W, LIN D, JIA J Y, et al, 2014. Two-class weather classification[C]// IEEE. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE: 3 718-3 725. |
[59] | MAAS A L, HANNUN A Y, NG A Y, 2013. Rectifier nonlinearities improve neural network acoustic models[C]// International Conference on Machine Learning (ICML). Atlanta, USA. |
[60] | NESTEROV Y, 1983. A method for solving the convex programming problem with convergence rate O(1/k^2)[J]. Proceedings of the USSR Academy of Sciences, 269: 543-547. |
[61] |
PRADHAN R, AYGUN R S, MASKEY M, et al, 2018. Tropical cyclone intensity estimation using a deep convolutional neural network[J]. IEEE Transactions on Image Processing, 27(2): 692-702.
DOI PMID |
[62] | RACAH E, BECKHAM C, MAHARAJ T, et al, 2016. Semi-supervised detection of extreme weather events in large climate datasets[C/OL]// Neural Information Processing Systems (NIPS). Long Beach, CA, USA. (2016-12-07)[2024-04-17]. https://arxiv.org/abs/1612.02095v1. |
[63] | RONNEBERGER O, FISCHER P, BROX T, 2015. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer International Publishing: 234-241. |
[64] | RUDER S, 2016. An overview of gradient descent optimization algorithms[J/OL]. (2016-09-15)[2024-04-17]. https://arxiv.org/abs/1609.04747. |
[65] | RUMELHART D E, HINTON G E, WILLIAMS R J, 1986. Learning representations by back-propagating errors[J]. Nature, 323: 533-536. |
[66] | SABOUR S, FROSST N, HINTON G E, 2017. Dynamic Routing Between Capsules[C/OL]// Neural Information Processing Systems (NIPS). Long Beach, CA, USA. (2017-11-07)[2024-04-17]. https://arxiv.org/abs/1710.09829. |
[67] | SCHER S, 2018. Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep learning[J]. Geophysical Research Letters, 45(22): 12 616-12 622. |
[68] | SCHER S, MESSORI G, 2018. Predicting weather forecast uncertainty with machine learning[J]. Quarterly Journal of the Royal Meteorological Society, 144(717): 2 830-2 841. |
[69] | SCHER S, MESSORI G, 2019. Weather and climate forecasting with neural networks: using general circulation models (GCMs) with different complexity as a study ground[J]. Geoscientific Model Development, 12(7): 2 797-2 809. |
[70] | SCHULTZ M G, BETANCOURT C, GONG B, et al, 2021. Can deep learning beat numerical weather prediction?[J] Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194): 20200097. DOI: 10.1098/rsta.2020.0097. |
[71] | SELVARAJU R R, COGSWELL M, DAS A, et al, 2020. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 128(2): 336-359. |
[72] | SHI C Z, WANG C H, WANG Y, et al, 2017a. Deep convolutional activations-based features for ground-based cloud classification[J]. IEEE Geoscience and Remote Sensing Letters, 14(6): 816-820. |
[73] | SHI X J, CHEN Z R, WANG H, et al, 2015. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press: 802-810. |
[74] | SHI X J, GAO Z H, LAUSEN L, et al, 2017b. Deep learning for precipitation nowcasting: A benchmark and a new model[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc., Long Beach, California, USA: 5 622-5 632. |
[75] | SINHA N K, GRISCIK M P, 1971. A stochastic approximation method[J]. IEEE Transactions on Systems, Man, and Cybernetics, SMC-1(4): 338-344. |
[76] | SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al, 2014. Striving for simplicity: The all convolutional net[C/OL]// International Conference on Learning Representations (ICLR). San Diego, CA, USA. (2014-12-21)[2024-04-17]. https://arxiv.org/abs/1412.6806. |
[77] | SZEGEDY C, LIU W, JIA Y Q, et al, 2015. Going deeper with convolutions[C]// IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE: 1-9. |
[78] | TIELEMAN T, HINTON G, 2012. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2): 26-31. |
[79] | VANDAL T, KODRA E, GANGULY S, et al, 2017. DeepSD: Generating high resolution climate change projections through single image super-resolution[C]// 27th International Joint Conference on Artificial Intelligence (IJCAI). Halifax, NS, Canada, 1703.03126. DOI: 10.48550/arXiv.1703.03126. |
[80] | WANG L Y, TAN Z M, 2023. Deep learning parameterization of the tropical cyclone boundary layer[J]. Journal of Advances in Modeling Earth Systems, 15(1): e2022MS003034. DOI: 10.1029/2022MS003034. |
[81] | WANG X, HAN Y L, XUE W, et al, 2022. Stable climate simulations using a realistic general circulation model with neural network parameterizations for atmospheric moist physics and radiation processes[J]. Geoscientific Model Development, 15(9): 3 923-3 940. |
[82] | WEYN J A, DURRAN D R, CARUANA R, 2019. Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data[J]. Journal of Advances in Modeling Earth Systems, 11(8): 2 680-2 693. |
[83] | XIE S N, GIRSHICK R, DOLLAR P, et al, 2017. Aggregated residual transformations for deep neural networks[C]// IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE: 5 987-5 995. |
[84] | XU B, WANG N Y, CHEN T Q, et al, 2015. Empirical evaluation of rectified activations in convolutional network[C]// International Conference on Machine Learning (ICML). Lille, France. DOI: 10.48550/arXiv.1505.00853. |
[85] | YAO M Y, TAO D, WANG J T, et al, 2022. MARVAir: Meteorology augmented residual-based visual approach for crowdsourcing air quality inference[J]. IEEE Transactions on Instrumentation and Measurement, 71: 1-10. |
[86] | YU D J, WANG H L, CHEN P Q, et al, 2014. Mixed pooling for convolutional neural networks[C]// The 9th International Conference on Rough Sets and Knowledge Technology. Shanghai, China. DOI: 10.1007/978-3-319-11740-9_34. |
[87] | ZEILER M D, FERGUS R, 2013. Stochastic pooling for regularization of deep convolutional neural networks[C]// 1st International Conference on Learning Representations (ICLR). Scottsdale, United States. DOI: 10.48550/arXiv.1301.3557. |
[88] | ZEILER M D, FERGUS R, 2014. Visualizing and understanding convolutional networks[C]// European Conference on Computer Vision (ECCV). Cham: Springer International Publishing. DOI: 10.1007/978-3-319-10590-1_53. |
[89] | ZHANG J L, LIU P, ZHANG F, et al, 2018. CloudNet: Ground-based cloud classification with deep convolutional neural network[J]. Geophysical Research Letters, 45(16): 8 665-8 672. |
[90] | ZHANG X Y, ZHOU X Y, LIN M X, et al, 2018. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE: 6 848-6 856. |
[91] | ZHAO B, LI X L, LU X Q, et al, 2018. A CNN-RNN architecture for multi-label weather recognition[J]. Neurocomputing, 322: 47-57. |
[92] | ZHAO X, WEI H K, WANG H, et al, 2019. 3D-CNN-based feature extraction of ground-based cloud images for direct normal irradiance prediction[J]. Solar Energy, 181: 510-518. |
[93] | ZHOU B L, KHOSLA A, LAPEDRIZA À, et al, 2016. Learning deep features for discriminative localization[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE: 2 921-2 929. |
[94] | ZHOU K H, ZHENG Y G, LI B, et al, 2019. Forecasting different types of convective weather: A deep learning approach[J]. Journal of Meteorological Research, 33(5): 797-809. |
[95] | ZOPH B, LE Q V, 2016. Neural architecture search with reinforcement learning[C/OL]// International Conference on Learning Representations (ICLR). Caribe Hilton, San Juan, Puerto Rico. (2016-11-05)[2024-04-17]. https://arxiv.org/abs/1611.01578. |
[1] | WEI Sentao, WANG Chenghai, ZHANG Feimin, YANG Kai. Study of soil moisture prediction method based on soil temperature and moisture persistence [J]. Journal of Arid Meteorology, 2023, 41(5): 783-791. |
[2] | YUAN Kai, PANG Jing, LI Wujie, LI Ming. Application evaluation of deep learning models in radar echo nowcasting in Wuhan in flood season of 2021 [J]. Journal of Arid Meteorology, 2023, 41(1): 173-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com