Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (5): 710-718.DOI: 10.11755/j.issn.1006-7639-2024-05-0710

• Special Column: Application of Artificial Intelligence in Drought Meteorology and Related Fields • Previous Articles     Next Articles

Fusion model of wind power prediction based on multiple machine learning algorithms

HAN Zifen1(), CHEN Ning1, FAN Yi2, XIE Zhihua2, SHA Sha3()   

  1. 1. State Grid Gansu Electric Power Company, Lanzhou 730030, China
    2. State Grid Gansu Electric Power Company Zhangye Power Supply Company, Zhangye 734000, Gansu, China
    3. Institute of Arid Meteorology, CMA, Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, Key Laboratory of Arid Climate Change and Disaster Reduction of CMA, Lanzhou 730020, China
  • Received:2023-07-21 Revised:2024-01-29 Online:2024-10-31 Published:2024-11-17

基于多种机器学习算法的风电功率预测融合模型

韩自奋1(), 陈宁1, 范义2, 谢志华2, 沙莎3()   

  1. 1.国网甘肃省电力公司,甘肃 兰州 730030
    2.国网甘肃省电力公司张掖供电公司,甘肃 张掖 734000
    3.中国气象局兰州干旱气象研究所,甘肃省干旱气候变化与减灾重点实验室,中国气象局干旱气候变化与减灾重点实验室,甘肃 兰州 730020
  • 通讯作者: 沙莎(1985—),女,汉族,辽宁沈阳人,主要从事机器学习应用研究。E-mail:nuist_shasha@126.com
  • 作者简介:韩自奋(1976—),男,汉族,甘肃民乐人,博士,正高级工程师,主要从事水电及新能源调度管理工作。E-mail: 7638403@qq.com
  • 基金资助:
    国家电网有限公司科技项目“基于合理量率一体下的甘肃风光储最佳配置比例研究”(52270723000900K)

Abstract:

The accurate prediction of wind power is of great significance for the dispatching department to adjust power generation planning in a timely manner. Machine learning is one of the main methods of wind power prediction at present. However, how to select reliable and effective single model from numerous machine learning algorithms, and how to fit and associate different models are the key and difficult points of multi-model combination prediction methods. Based on the wind power and wind tower wind speed data of Jiuquan Gandong Wind Power Electric Station of China Genneral Nuclear Power Corporation from January 1, 2020 to December 31, 2020, and the characteristics of various typical machine learning algorithms and a single model on the test set, the combination method of K-Nearest Neighbor (KNN), Bootstrap Aggregating (BA) and Convolutional Neural Network (CNN) is studied, and a wind power prediction model that integrates KNN, BA and CNN is established. The results show that all single models overestimate the low values of some values, and the Multi-Layer Perceptron (MLP) and CNN neural networks also underestimate the high values. The BA model has the highest prediction accuracy, and its Root Mean Square Error (RMSE) on the test set is 13.08 MW. The combined models can improve the prediction accuracy of the single model to a certain extent. The RMSE of the CNN combined model on the test set is 12.21 MW, which is about 6.7% lower than the RMSE of the best BA model in the single models. The CNN combined model can significantly improve the situation that the high value is underestimated, the low value is overestimated for the CNN single model, and the low value is overestimated for the BA model. The prediction model established in this article can be extended to practical wind power prediction.

Key words: CNN, Bagging, KNN, wind power

摘要:

风电场发电功率的精确预测对调度部门及时调整发电规划意义重大。利用2020年1月1日—12月31日甘肃酒泉中广核干东风电场的风功率及风塔风速数据,基于多种典型的机器学习算法和单一模型在测试集上表现出的特点,研究K近邻(K-Nearest Neighbor,KNN)、装袋算法(Bootstrap Aggregating,BA)与卷积神经网络(Convolutional Neural Network,CNN)的组合方法,建立融合KNN、BA与CNN的风电功率预测模型。结果表明,单一模型均存在对部分值低值高估的情况,其中多层感知机(Multilayer Perceptron,MLP)、CNN这两种神经网络还存在明显的高值低估现象;BA模型预测精度最高,其在测试集上的均方根误差(Root Mean Square Error, RMSE)为13.08 MW;组合模型均能一定程度上提高单一模型的预测精度,其中CNN组合模型在测试集上RMSE为12.21 MW,比单一模型中最好的BA模型RMSE下降约6.7%,CNN组合模型可以明显改善CNN单一模型高值低估、低值高估和BA模型低值高估的情况。

关键词: CNN, 装袋算法, KNN, 风电功率

CLC Number: