[1] |
陈正洪, 李芬, 成驰, 2011. 太阳能光伏发电预报技术原理及其业务系统[M]. 北京: 气象出版社.
|
[2] |
达选芳, 李照荣, 王小勇, 等, 2021. 有云条件下太阳辐射短临预报订正技术研究[J]. 干旱气象, 39(6): 1 006-1 016.
|
[3] |
丁明, 王伟胜, 王秀丽, 等, 2014. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 34(1): 1-14.
|
[4] |
韩自奋, 颜鹏程, 李扬, 等, 2022. 基于短期历史资料的河西地区太阳辐射预报订正研究[J]. 干旱气象, 40(1): 125-134.
DOI
|
[5] |
赖昌伟, 黎静华, 陈博, 等, 2019. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 34(6): 1 201-1 217.
|
[6] |
李遥, 李照荣, 王小勇, 等, 2020. 基于斜面辐射算法的短期光伏功率预测方法研究[J]. 干旱气象, 38(5): 869-877.
|
[7] |
秦正坤, 2007. 短期气候数值预测的误差订正和超级集合方法研究[D]. 南京: 南京信息工程大学.
|
[8] |
王开艳, 杜浩东, 贾嵘, 等, 2022. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 48(11): 4 372-4 388.
|
[9] |
王林, 陈正洪, 唐俊, 2014. 太阳能光伏发电预报方法的应用效果检验与评价[J]. 气象, 40(8): 1 006-1 012.
|
[10] |
王占东, 2024. 甘肃光伏单日发电量突破1亿千瓦时创历史新高[N]. 甘肃日报, 2024-03-10(2).
|
[11] |
许沛华, 陈正洪, 孙延维, 等, 2021. 湖北山区复杂地形条件下风电功率预报算法研究[J]. 干旱气象, 39(3): 524-532.
|
[12] |
杨锡运, 刘欢, 张彬, 等, 2014. 基于熵权法的光伏输出功率组合预测模型[J]. 太阳能学报, 35(5): 744-749.
|
[13] |
殷豪, 陈云龙, 孟安波, 等, 2019. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报, 40(7): 1 866-1 873.
|
[14] |
曾庆丰, 蔡延光, 胡城, 等, 2024. 蝗虫优化算法综述[J]. 自动化与信息工程, 45(1):1-11.
|
[15] |
赵书强, 李志伟, 2018. 考虑可再生能源出力不确定性的多能源电力系统日前调度[J]. 华北电力大学学报:自然科学版, 45(5): 1-10.
|
[16] |
赵文清, 郭丙旭, 李刚, 等, 2017. 基于智能水滴算法优化Elman神经网络的光伏电站输出功率预测[J]. 太阳能学报, 38(6): 1 553-1 559.
|
[17] |
朱飙, 李春华, 方锋, 2010. 甘肃省太阳能资源评估[J]. 干旱气象, 28(2): 217-221.
|
[18] |
ASLAM S, HERODOTOU H, MOHSIN S M, et al, 2021. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids[J]. Renewable and Sustainable Energy Reviews, 144: 110992. DOI: 10.1016/j.rser2021.110992.
|
[19] |
ELHADIDY M A, SHAAHID S M, 2000. Parametric study of hybrid (wind+solar+diesel) power generating systems[J]. Renewable Energy, 21(2): 129-139.
|
[20] |
KHARE V, NEMA S, BAREDAR P, 2016. Solar-wind hybrid renewable energy system: A review[J]. Renewable and Sustainable Energy Reviews, 58: 23-33.
|
[21] |
LI Y T, HE Y, SU Y, et al, 2016. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines[J]. Applied Energy, 180: 392-401.
|
[22] |
MIRJALILI S Z, MIRJALILI S, SAREMI S, et al, 2018. Grasshopper optimization algorithm for multi-objective optimization problems[J]. Applied Intelligence, 48(4): 805-820.
|
[23] |
MITRENTSIS G, LENS H, 2022. An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting[J]. Applied Energy, 309: 118473. DOI:10.1016/j.apenergy.2021.118473.
|
[24] |
MONTEIRO C, SANTOS T, FERNANDEZ-JIMENEZ L, et al, 2013. Short-term power forecasting model for photovoltaic plants based on historical similarity[J]. Energies, 6(5): 2 624-2 643.
|
[25] |
MOREIRA M O, BALESTRASSI P P, PAIVA A P, et al, 2021. Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting[J]. Renewable and Sustainable Energy Reviews, 135: 110450.DOI:10.1016/j.rser.2020.110450.
|
[26] |
PERSSON C, BACHER P, SHIGA T, et al, 2017. Multi-site solar power forecasting using gradient boosted regression trees[J]. Solar Energy, 150: 423-436.
|
[27] |
SAREMI S, MIRJALILI S, LEWIS A, 2017. Grasshopper optimisation algorithm: Theory and application[J]. Advances in Engineering Software, 105: 30-47.
|
[28] |
WANG F, XUAN Z M, ZHEN Z, et al, 2020. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J]. Energy Conversion and Management, 212: 112766. DOI:10.1016/j.enconman.2020.112766.
|
[29] |
WANG J Z, JIANG H, WU Y J, et al, 2015. Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm[J]. Energy, 81: 627-644.
|
[30] |
YAGLI G M, YANG D Z, SRINIVASAN D, 2019. Automatic hourly solar forecasting using machine learning models[J]. Renewable and Sustainable Energy Reviews, 105: 487-498.
|