Journal of Arid Meteorology ›› 2023, Vol. 41 ›› Issue (4): 550-559.DOI: 10.11755/j.issn.1006-7639(2023)-04-0550
• Articles • Previous Articles Next Articles
YANG Yang(), ZHAO Weiming, HU Yingbing, SHENG Dong, WEI Yongqiang, SHEN Zhigao, TAN Jun
Received:
2023-02-08
Revised:
2023-03-31
Online:
2023-08-31
Published:
2023-08-29
杨扬(), 赵伟明, 胡颖冰, 盛东, 魏永强, 申志高, 谭军
作者简介:
杨扬(1989—),男,博士,安徽省桐城人,主要从事水旱灾害风险研究。E-mail: 773483983@qq.com。
基金资助:
CLC Number:
YANG Yang, ZHAO Weiming, HU Yingbing, SHENG Dong, WEI Yongqiang, SHEN Zhigao, TAN Jun. Spatio-temporal evolution characteristics of drought in the “Heng-Shao-Lou drought corridor”[J]. Journal of Arid Meteorology, 2023, 41(4): 550-559.
杨扬, 赵伟明, 胡颖冰, 盛东, 魏永强, 申志高, 谭军. “衡邵娄干旱走廊”干旱时空演变特征分析[J]. 干旱气象, 2023, 41(4): 550-559.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2023)-04-0550
等级 | 类型 | SPI |
---|---|---|
1 | 无旱 | >-0.5 |
2 | 轻旱 | (-1.0, -0.5] |
3 | 中旱 | (-1.5, -1.0] |
4 | 重旱 | (-2.0, -1.5] |
5 | 特旱 | ≤-2.0 |
Tab.1 Classification standard of drought grades based on SPI
等级 | 类型 | SPI |
---|---|---|
1 | 无旱 | >-0.5 |
2 | 轻旱 | (-1.0, -0.5] |
3 | 中旱 | (-1.5, -1.0] |
4 | 重旱 | (-2.0, -1.5] |
5 | 特旱 | ≤-2.0 |
类型 | SPI-1 | 游程理论整合 | ||
---|---|---|---|---|
发生频次 | 发生 频率/% | 发生频次 | 发生 频率/% | |
无旱 | 399 | 70.8 | 360 | 76.9 |
轻旱 | 79 | 14.0 | 59 | 12.6 |
中旱 | 48 | 8.5 | 29 | 6.2 |
重旱 | 22 | 3.9 | 13 | 2.7 |
特旱 | 16 | 2.8 | 7 | 1.5 |
Tab.2 Statistics of drought events in Shaoyang County during 1971-2022
类型 | SPI-1 | 游程理论整合 | ||
---|---|---|---|---|
发生频次 | 发生 频率/% | 发生频次 | 发生 频率/% | |
无旱 | 399 | 70.8 | 360 | 76.9 |
轻旱 | 79 | 14.0 | 59 | 12.6 |
中旱 | 48 | 8.5 | 29 | 6.2 |
重旱 | 22 | 3.9 | 13 | 2.7 |
特旱 | 16 | 2.8 | 7 | 1.5 |
特征量 | 干旱历时/月 | 干旱强度 |
---|---|---|
均值 | 1.89 | 1.94 |
方差 | 1.67 | 2.24 |
1/4中位数 | 1.00 | 0.85 |
中位数 | 1.00 | 1.36 |
3/4中位数 | 2.00 | 2.52 |
Tab.3 The characteristic variables statistics of duration and severity of drought events in Shaoyang County during 1971-2022
特征量 | 干旱历时/月 | 干旱强度 |
---|---|---|
均值 | 1.89 | 1.94 |
方差 | 1.67 | 2.24 |
1/4中位数 | 1.00 | 0.85 |
中位数 | 1.00 | 1.36 |
3/4中位数 | 2.00 | 2.52 |
Copula函数 类型 | 联合分布函数 | θ拟合参数 | |
---|---|---|---|
Gumbel-Copula | 2.199 2 | 0.011 | |
Clayton-Copula | 2.175 0 | 0.019 | |
Frank-Copula | 7.215 3 | 0.018 |
Tab.4 The joint distribution function of duration and severity of drought events based on different types of Copula functions and goodness-of-fit test in Shaoyang County during 1971-2022
Copula函数 类型 | 联合分布函数 | θ拟合参数 | |
---|---|---|---|
Gumbel-Copula | 2.199 2 | 0.011 | |
Clayton-Copula | 2.175 0 | 0.019 | |
Frank-Copula | 7.215 3 | 0.018 |
Fig.3 The joint distribution density (a) and cumulative probability (b) of drought events based on Gumbel-Copula function in Shaoyang County during 1971-2022
干旱类型 | 干旱重现期/a | 干旱历时/月,强度 | 累积概率/% |
---|---|---|---|
轻旱 | 0~1 | (30.78, 100.00) | |
中旱 | >1~2 | (13.43, 30.78] | |
重旱 | >2~6 | (4.80, 13.43] | |
特旱 | >6 | (0.00, 4.80] |
Tab.5 The classification standard of drought grades based on joint return period of drought duration and severity in the Heng-Shao-Lou drought corridor
干旱类型 | 干旱重现期/a | 干旱历时/月,强度 | 累积概率/% |
---|---|---|---|
轻旱 | 0~1 | (30.78, 100.00) | |
中旱 | >1~2 | (13.43, 30.78] | |
重旱 | >2~6 | (4.80, 13.43] | |
特旱 | >6 | (0.00, 4.80] |
干旱类型 | 游程理论整合 | 干旱历时和强度联合重现期 | ||
---|---|---|---|---|
干旱频数 | 干旱 频率/% | 干旱频数 | 干旱 频率/% | |
轻旱 | 1 375 | 53.2 | 1 788 | 69.2 |
中旱 | 751 | 29.1 | 448 | 17.3 |
重旱 | 312 | 12.1 | 223 | 8.6 |
特旱 | 145 | 5.6 | 124 | 4.8 |
Tab.6 Statistics of drought events in the Heng-Shao-Lou drought corridor during 1971-2022
干旱类型 | 游程理论整合 | 干旱历时和强度联合重现期 | ||
---|---|---|---|---|
干旱频数 | 干旱 频率/% | 干旱频数 | 干旱 频率/% | |
轻旱 | 1 375 | 53.2 | 1 788 | 69.2 |
中旱 | 751 | 29.1 | 448 | 17.3 |
重旱 | 312 | 12.1 | 223 | 8.6 |
特旱 | 145 | 5.6 | 124 | 4.8 |
Fig.6 Spatial distribution of drought frequency for different types in the Heng-Shao-Lou drought corridor during 1971-2022 (Unit: %) (a) slight drought, (b) moderate drought, (c) severe drought, (d) extreme drought
[1] |
陈再清, 侯威, 左冬冬, 等, 2016. 基于修订Copula函数的中国干旱特征研究[J]. 干旱气象, 34(2): 213-222.
DOI |
[2] | 崔刚, 韩曦, 2015. 基于Copula理论的甘肃省干旱特征分析[J]. 人民黄河, 37(11): 77-80. |
[3] | 邓谷君, 1985. 湖南省水利志[M]. 长沙: 湖南省水利水电厅. |
[4] | 郭冬, 吐尔逊·哈斯木, 吴秀兰, 等, 2022. 四种气象干旱指数在新疆区域适用性研究[J]. 沙漠与绿洲气象, 16(3): 90-101. |
[5] | 国家气候中心,,, 中国气象局预报与网络司, 中国气象局兰州干旱气象研究所, 2017. 气象干旱等级: GB/T 20481—2017[S]. 北京: 中国标准出版社. |
[6] | 韩会明, 游文荪, 简鸿福, 等, 2021. 赣江流域气象干旱与水文干旱特征及其概率关系[J]. 人民长江, 52(5): 44-49. |
[7] | 韩志慧, 刘小刚, 郝琨, 等, 2017. 基于SPI指数的内蒙古地区干旱演变特征及趋势研究[J]. 排灌机械工程学报, 35(5): 430-439. |
[8] | 黄梦杰, 贺新光, 卢希安, 2020. 长江流域的非平稳SPI干旱时空特征分析[J]. 长江流域资源与环境, 29(7): 1 597-1 611. |
[9] | 黄荣辉, 周连童, 2002. 我国重大气候灾害特征、形成机理和预测研究[J]. 自然灾害学报, 11(1): 1-9. |
[10] | 李军, 王兆礼, 黄泽勤, 等, 2016. 基于SPEI的西南农业区气象干旱时空演变特征[J]. 长江流域资源与环境, 25(7): 1 142-1 149. |
[11] | 李明, 张永清, 张莲芝, 2017. 基于Copula函数的长春市106年来的干旱特征分析[J]. 干旱区资源与环境, 31(6): 147-153. |
[12] |
李稚, 李玉朋, 李鸿威, 等, 2022. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 37(1): 37-50.
DOI |
[13] | 龙瑞昊, 畅建霞, 张鸿雪, 等, 2020. 基于Copula的澜沧江流域气象干旱风险分析[J]. 北京师范大学学报(自然科学版), 56(2): 265-274. |
[14] | 彭双姿, 刘鑫淼, 陈涛, 等, 2021. 衡邵干旱走廊干旱监测评估方法探讨[J]. 干旱气象, 39(6): 894-899. |
[15] | 王晓峰, 张园, 冯晓明, 等, 2017. 基于游程理论和Copula函数的干旱特征分析及应用[J]. 农业工程学报, 33(10): 206-214. |
[16] | 王瑛, 刘天雪, 李体上, 等, 2017. 中国中小型自然灾害的空间格局研究——以地震、洪涝、旱灾为例[J]. 自然灾害学报, 26(4): 48-55. |
[17] | 王兆礼, 李军, 黄泽勤, 等, 2016. 基于改进帕默尔干旱指数的中国气象干旱时空演变分析[J]. 农业工程学报, 32(2): 161-168. |
[18] | 余兴湛, 蒲义良, 康伯乾, 2022. 基于SPEI的广东省近50 a干旱时空特征[J]. 干旱气象, 40(6): 1 051-1 058. |
[19] | 袁先雷, 彭志潮, 刘雪宁, 2021. 新疆地区植被对多时间尺度干旱的响应研究[J]. 沙漠与绿洲气象, 15(3): 129-136. |
[20] |
张强, 2022. 科学解读“2022年长江流域重大干旱”[J]. 干旱气象, 40(4): 545-548.
DOI |
[21] |
张强, 韩兰英, 张立阳, 等, 2014. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 29(1): 80-91.
DOI |
[22] | 张午朝, 高冰, 马育军, 2019. 长江流域1961-2015年不同等级干旱时空变化分析[J]. 人民长江, 50(2): 53-57. |
[23] | 周莉, 周慧, 李巧媛, 等, 2020. 衡邵盆地的干旱时空分布特征及其与土地类型的关系[J]. 湖北农业科学, 59(14): 56-62. |
[24] | 朱静, 包光, 2020. 基于SPI的阿拉善盟1975—2010年干旱时空特征研究[J]. 宝鸡文理学院学报(自然科学版), 40(1): 78-84. |
[25] | ABRAMOWITZ M, STEGUN I A, 1964. Handbook of mathematical functions with formulas, graphs, and mathematical tables[M]. Washington D C: U.S. Department of Commerce, Weather Bureau of Standards. |
[26] | HENRY A J, 1906. The climatology of the United States[M]. Washington: U.S. Department of Agriculture, Weather Bureau, Bulletin Q. |
[27] |
HERBST P H, BREDENKAMP D B, BARKER H M G, 1966. A technique for the evaluation of drought from rainfall data[J]. Journal of hydrology, 4: 264-272.
DOI URL |
[28] |
HUANG J P, YU H P, GUAN X D, et al, 2016. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 6(2): 166-172.
DOI |
[29] | MCKEE T B, DOESKEN N J, KLEIST J, 1993. The relationship of drought frequency and duration to time scales[C]// In proceedings of the 8th Conference on Applied Climatology, Anaheim, California, American Meteorological Society: 179-184. |
[30] | PALMER W C, 1965. Meteorological drought[M]. Washington D C: U.S. Department of Commerce, Weather Bureau. |
[31] |
SHIAU J T, 2006. Fitting drought duration and severity with two-dimensional Copulas[J]. Water Resources Management, 20(5): 795-815.
DOI URL |
[32] |
SHIAU J T, SHEN H W, 2001. Recurrence analysis of hydrologic droughts of differing severity[J]. Journal of Water Resources Planning Management, 127(1): 30-40.
DOI URL |
[33] |
SHUKLA S, WOOD A W, 2008. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters, 35(2), L02405. DOI: 10.1029/2007GL032487.
DOI |
[34] | SKLAR A, 1959. Fonctions de répartition à n dimensions et leurs marges[J]. Publications de l’ Institut de Statistique de l’ Université de Paris, 8: 229-231. |
[35] |
VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I, 2010. A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 23(7): 1 696-1 718.
DOI URL |
[1] | ZHAO Huizhen, HE Tao , GUO Ruixia, WANG Chengfu , ZHANG Yanrong , LI Qi. Meteorological drought variation characteristics in the Gannan Plateau based on standardized precipitation evapotranspiration index [J]. Journal of Arid Meteorology, 2023, 41(5): 688-696. |
[2] | YANG Yang, WANG Lijuan, HUANG Xiaoyan, QI Yue, XIE Rui. Analysis on spatio-temporal variation of evapotranspiration in the Yellow River Basin based on ERA5-Land products [J]. Journal of Arid Meteorology, 2023, 41(3): 390-402. |
[3] | JIANG Peng, QIN Meiou, CAI Fu, WEN Rihong, MENG Ying, YANG Feiyun, SUN Pei, FENG Ailin, FANG Yuan. Impacts of drought-rewetting on spring maize's physiological parameters and yield in the northeast China [J]. Journal of Arid Meteorology, 2023, 41(2): 207-214. |
[4] | YIN Ninglu, LI Junlin, HONG Ye, GUO Yong, WANG Shigong. Influence of air temperature on number of respiratory diseases hospitalization in two counties of Liaoning Province [J]. Journal of Arid Meteorology, 2023, 41(1): 132-142. |
[5] | WANG Xiaochen, MA Xueqing, HE Huayun, REN Siqi, TANG Shuyue, ZHAO Jinyuan, PAN Zhihua, WANG Jing, PAN Xuebiao, HU Qi. Characteristics of dry and wet changes in sunflower growing areas in northern China and their causes from 1961 to 2020 [J]. Journal of Arid Meteorology, 2022, 40(6): 1033-1041. |
[6] | CHEN Yanli, TANG Meirong, ZHANG Hui, MO Jianfei, QIAN Shuan. Response difference of fractional vegetation cover and net primary productivity to SPEI drought index in karst areas of Guangxi [J]. Journal of Arid Meteorology, 2022, 40(6): 1042-1050. |
[7] | LI Liang, YANG Zesu, HE Hang. Evapotranspiration-precipitation coupling strength response to hydrothermal factors over northern China [J]. Journal of Arid Meteorology, 2022, 40(5): 791-803. |
[8] | ZHANG Linhan, BI Jianrong, ZHANG Xueteng, LI Zhengpeng, ZHAO Changming, MA Xiaojun. Grassland soil respiration characteristics and their influencing factors in semi-arid region of Loess Plateau during the growing season in 2020 [J]. Journal of Arid Meteorology, 2022, 40(3): 354-363. |
[9] | AN Linli, HUANG Jianping, REN Yu, ZHANG Guolong. Characteristic and cause analysis of terrestrial water storage change in drylands of northern China [J]. Journal of Arid Meteorology, 2022, 40(2): 169-178. |
[10] | YU Jing,WANG Ying,GAO Yamin,QI Jiahui,FU Ming. Spatio-temporal Variation Characteristics of Surface Evapotranspiration in the Korqin Grassland Based on MOD16 Products [J]. Journal of Arid Meteorology, 2021, 39(5): 831-837. |
[11] | ZHANG Yachun, MA Yaoming, MA Weiqiang, WANG Binbin, WANG Yuyang, . Evapotranspiration Variation and Its Correlation with Meteorological Factors on Different Underlying Surfaces of the Tibetan Plateau [J]. Journal of Arid Meteorology, 2021, 39(3): 366-373. |
[12] | XU Jing, LIU Huayue, JIN Tiantian, SUN Ziyuan, FU Guiqin. Effect of Temperature on Children’s Respiratory Diseases in Qinhuangdao of Hebei Province [J]. Journal of Arid Meteorology, 2021, 39(2): 326-332. |
[13] | HUANG Kailong, LIN Jinchun, MA Pan, HUANG Wenjing, LU Junxiang, TANG Xiaoxin, WANG Shigong. Influence of meteorological factors on number of upper respiratory tract infection visits in Luohu of Shenzhen [J]. Journal of Arid Meteorology, 2021, 39(06): 995-1005. |
[14] | TAN Yanjing, HU Chengda, SHI Guifen. Spatio-temporal Variation Characteristics of Reference Crop Evapotranspiration and Its Influencing Factors in Huang-Huai-Hai Region [J]. Journal of Arid Meteorology, 2020, 38(5): 794-803. |
[15] | SHI Shangyu, WANG Fei, JIN Kai, DING Wenbin. Response of Vegetation Index to Meteorological Drought over Loess Plateau [J]. Journal of Arid Meteorology, 2020, 38(1): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com