Journal of Arid Meteorology ›› 2022, Vol. 40 ›› Issue (6): 954-967.DOI: 10.11755/j.issn.1006-7639(2022)-06-0954
• Study on rainstorm in arid region • Previous Articles Next Articles
LI Chenrui1(), FU Jing1(
), LIU Weicheng1, WANG Jixin1, WANG Yicheng1, FU Zhao1, ZHEN Xin2
Received:
2022-09-13
Revised:
2022-11-16
Online:
2022-12-31
Published:
2023-01-10
Contact:
FU Jing
李晨蕊1(), 伏晶1(
), 刘维成1, 王基鑫1, 王一丞1, 傅朝1, 郑新2
通讯作者:
伏晶
作者简介:
李晨蕊(1991—),女,工程师,主要从事卫星遥感与强对流天气研究. E-mail:lcr0273@l26.com。
基金资助:
CLC Number:
LI Chenrui, FU Jing, LIU Weicheng, WANG Jixin, WANG Yicheng, FU Zhao, ZHEN Xin. Cloud characteristics analysis of a torrential rainfall event use FY satellite in semi-arid region of Eastern Gansu Province[J]. Journal of Arid Meteorology, 2022, 40(6): 954-967.
李晨蕊, 伏晶, 刘维成, 王基鑫, 王一丞, 傅朝, 郑新. 应用FY卫星产品分析陇东半干旱区特大暴雨事件云特征[J]. 干旱气象, 2022, 40(6): 954-967.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2022)-06-0954
卫星 | 观测要素 | 空间分辨率 /km | 时间分辨率 |
---|---|---|---|
FY-4A | 云顶相当黑体亮温、云顶类型、云顶高度和大气水汽含量 | 4 | 15 min~1 h |
FY-4B | 夜间微物理图像、白天微物理图像和强风暴图像 | 4 | 15 min~1 h |
FY-3D | 大气温湿度廓线、K指数、抬升指数(lifting index,LI) | 33 | 轨道周期:101.5 min 回归周期:5.5 d |
Tab.1 Introduction to the satellite data
卫星 | 观测要素 | 空间分辨率 /km | 时间分辨率 |
---|---|---|---|
FY-4A | 云顶相当黑体亮温、云顶类型、云顶高度和大气水汽含量 | 4 | 15 min~1 h |
FY-4B | 夜间微物理图像、白天微物理图像和强风暴图像 | 4 | 15 min~1 h |
FY-3D | 大气温湿度廓线、K指数、抬升指数(lifting index,LI) | 33 | 轨道周期:101.5 min 回归周期:5.5 d |
卫星图像 | R | G | B |
---|---|---|---|
夜间微物理图像 | IR 12.0 μm,10.8 μm | IR 10.8 μm,3.72 μm | IR 10.8 μm |
白天微物理图像 | WV 6.25 μm,7.1μm | IR 3.72 μm,10.8 μm | NIR 1.61 μm,VIS 0.66 μm |
强风暴图像 | VIS 0.83 μm | IR 3.72 μm | IR 10.8 μm |
Tab.2 The multi-channel RGB combination from FY-4B satellite
卫星图像 | R | G | B |
---|---|---|---|
夜间微物理图像 | IR 12.0 μm,10.8 μm | IR 10.8 μm,3.72 μm | IR 10.8 μm |
白天微物理图像 | WV 6.25 μm,7.1μm | IR 3.72 μm,10.8 μm | NIR 1.61 μm,VIS 0.66 μm |
强风暴图像 | VIS 0.83 μm | IR 3.72 μm | IR 10.8 μm |
Fig.1 The spatial distribution of 24 h cumulative precipitation from 20:00 BST on 14 to 20:00 BST on 15 July 2022 in Eastern Gansu and its surrounding areas (Unit: mm) (The black pentagram for 5 regional stations geography location. the same as below )
Fig.2 The geopotential height field (black isolines, Unit: gpm) and temperature field (red isolines, Unit: ℃) at 500 hPa(a, b),wind field (wind vectors, Unit: m·s-1) and temperature field (red isolines, Unit: ℃) at 700 hPa (c, d) at 02:00 BST (a, c) and 14:00 BST (b, d) on 15 July 2022
Fig.6 The microphysical image at nighttime from FY-4B satellite at 01:00 BST (a) and 05:00 BST (b) on 15 July 2022, and the latitude-time (c, along CD line segment) and longitude-time (d, along AB line segment) cross section along Zhaijiahe station (107.62°E, 36.08°N) (The white pentagram for 5 regional stations geography location)
Fig.7 The storm image on daytime from FY-4B satellite at 08:00 BST (a) and 16:00 BST (b) on 15 July 2022,and the latitude-time (c, along CD line segment) and longitude-time (d, along AB line segment) cross section along Zhaijiahe station (107.62°E,36.08°N)
Fig.8 The microphysical image in the daytime from FY-4B satellite at 14:00 BST (a) and 16:00 BST (b) on 15 July 2022,and the latitude-time (c, along CD line segment) and longitude-time (d, along AB line segment) cross section along Zhaijiahe station (107.62°E,36.08°N)
Fig.9 The TBB distribution (color shaded areas, Unit: K) and hourly precipitation intensity (color dots, Unit: mm·h-1)from 01:00 BST to 19:00 BST on 15 July 2022
Fig.12 The vertical profile of temperature (a) and specific humidity (b) retrieved by FY-3D satellite and pseudo potential temperature vertical profile (c) at 01:43 BST on 15 July 2022
[1] | 刘健, 张文建, 朱元竞, 等. 中尺度强暴雨云团云特征的多种卫星资料综合分析[J]. 应用气象学报, 2007, 18(2):158-164. |
[2] | 杨磊, 才奎志, 孙丽, 等. 基于葵花8号卫星资料的沈阳两次暴雨过程中对流云特征对比分析[J]. 暴雨灾害, 2020, 39(2):125-135. |
[3] | 何锡玉, 蔡夕方, 朱亚平, 等. 我国风云极轨气象卫星及应用进展[J]. 气象科技进展, 2021, 11(1):34-39. |
[4] |
MADDOX R A. Mesoscale convective complexes[J]. Bulletin of the American Meteorological Society, 1980, 61(11): 1374-1387.
DOI URL |
[5] |
MECIKALSKI J R, BEDKA K M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery[J]. Monthly Weather Review, 2006, 134(1):49-78.
DOI URL |
[6] | 覃丹宇, 方宗义. 利用静止气象卫星监测初生对流的研究进展[J]. 气象, 2014, 40(1):7-17. |
[7] | 牛宁, 姜晓飞, 张昕, 等. 风云四号卫星产品在一次暴雨天气过程分析中的应用[J]. 卫星应用, 2022, 3:42-48. |
[8] | 王清平, 秦贺, 程海艳, 等. 天山北坡中部一次短时暴雨的卫星反演云参数特征及成因分析[J]. 干旱区地理, 2021, 44(6):1580-1589. |
[9] | 张夕迪, 孙军. 葵花8号卫星在暴雨对流云团监测中的应用分析[J]. 气象, 2018, 44(10):1245-1254. |
[10] | 高梦醒, 肖天贵. 基于卫星云图对四川盆地东北部“9·13”暴雨特征分析[J]. 成都信息工程大学学报, 2016, 31(1):102-109. |
[11] | 张琪, 任景轩, 肖递祥, 等. “5·6”四川盆地对流云团特征及触发机制[J]. 气象, 2017, 43(12): 1487-1495. |
[12] | 吴涛, 张家国, 牛奔. 一次强降水过程涡旋状MCS结构特征及成因初步分析[J]. 气象, 2017, 43(5):540-551. |
[13] |
朱平, 肖建设. 青海高原短时强降水天气的葵花-8卫星监测预警特征对比分析[J]. 高原气象, 2022, 41(2):502-514.
DOI |
[14] | 张晓茹, 李映春, 纪晓玲, 等. 基于葵花-8卫星宁夏暴雨监测预警指标研究[J]. 沙漠与绿洲气象, 2022, 16(1):41-47. |
[15] | 张晓茹, 陈豫英, 姚姗姗, 等. 贺兰山东麓一次局地强对流暴雨的中尺度特征[J]. 气象, 2022, 48(7):801-812. |
[16] |
张雅乐, 俞小鼎. 黄河气旋暴雨过程发展演变成因分析[J]. 高原气象, 2021, 40(1):74-84.
DOI |
[17] | 吴志彦, 李宏江, 赵海军, 等. 卫星水汽图像和位势涡度场在一次变性台风暴雨过程中的解译应用[J]. 气象与环境学报, 2018, 34(3):1-8. |
[18] | 周鑫, 周顺武, 覃丹宇, 等. 利用FY-2F快速扫描资料分析对流初生阶段的云顶物理量特征[J]. 气象, 2019, 45(2):216-227 |
[19] |
沈程锋, 李国平. 基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J]. 高原气象, 2022, 41(6):1532-1543.
DOI |
[20] | 傅云飞, 罗晶, 罗双, 等. GPM卫星DPR和GMI探测的2018年5月重庆超级单体云团降水结构特征分析[J]. 暴雨灾害, 2022, 41(1):1-14. |
[21] | 李函璐, 孙礼璐, 杨柳, 等. 基于TRMM PR探测资料的青藏高原东坡降水结构特征分析[J]. 暴雨灾害, 2022, 41(4):384-395. |
[22] | 李芳, 李南, 万瑜. 台风“温比亚”影响山东期间GPM资料的降水分析[J]. 海洋气象学报, 2020, 40(4):69-76. |
[23] | 向朔育, 李跃清, 闵文彬, 等. 基于CloudSat探测的西南低涡对流云垂直结构特征[J]. 高原山地气象研究, 2019, 39(3):1-6. |
[24] | 朱梅, 何君涛, 方勉, 等. GPM卫星资料在分析“杜苏芮”台风降水结构中的应用[J]. 干旱气象, 2018, 36(6):997-1002. |
[25] | 王宝鉴, 黄玉霞, 魏栋, 等. TRMM卫星对青藏高原东坡一次大暴雨强降水结构的研究[J]. 气象学报, 2017, 75(6):966-980. |
[26] |
蒋璐君, 李国平, 母灵, 等. 基于TRMM资料的西南涡强降水结构分析[J]. 高原气象, 2014, 33(3):607-614.
DOI |
[27] |
CHANG W Y, LEE W C, LIOU Y U C. The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX[J]. Monthly Weather Review, 2015, 143(1):317-340.
DOI URL |
[28] |
ZIPSER E J, LUTZ K R. The vertical profile of radar reflectivity of convective cells: a strong indicator of storm intensity and lightning probability?[J]. Monthly Weather Review, 1994, 122(8):1751-1759.
DOI URL |
[29] | 陆风, 张晓虎, 陈博洋, 等. 风云四号气象卫星成像特性及其应用前景[J]. 海洋气象学报, 2017, 37(2):1-12 |
[30] | 高大伟, 樊高峰, 胡永亮, 等. FY-3气象卫星微波水汽三维可视化及其在强天气监测中的应用[J]. 国土资源遥感, 2014, 26(1):139-143. |
[31] |
SHAO J, GAO H, WANG X, et al. Application of Fengyun-4 satellite to flood disaster monitoring through a rapid multi-temporal synthesis approach[J]. Journal of Meteorological Research, 2020, 34(4):720-731.
DOI URL |
[32] | 张琪, 任景轩, 肖红茹, 等. 基于FY-4A卫星资料的四川盆地MCC初生和成熟阶段特征[J]. 大气科学, 2021, 45(4):863-873. |
[33] |
束艾青, 许冬梅, 李泓, 等. FY-3D卫星MWHS-2辐射率资料直接同化对台风“米娜”预报的影响[J]. 热带海洋学报, 2022, 41(5):17-28.
DOI |
[34] | 乔海伟, 张彦丽. 融合FY-3C号和FY-4A号卫星数据的积雪面积变化研究——以祁连山区为例[J]. 遥感技术与应用, 2020, 35(6):1320-1328. |
[35] |
TAN Z H, MA S, ZHAO X B. et al. Evaluation of cloud top height retrievals from China's next-generation geostationary meteorological satellite FY-4A[J]. Journal of Meteorological Research, 2019, 33(3):553-562.
DOI URL |
[36] |
WANG T, LUO J, LIANG J, et al. Comparisons of AGRI/FY-4A cloud fraction and cloud top pressure with MODIS/Terra measurements over East Asia[J]. Journal of Meteorological Research, 2019, 33(4):705-719.
DOI URL |
[37] | 王明, 陈英英, 周毓荃, 等. 基于一次暴雨过程的风云四号A星三种云参数应用效果对比分析[J]. 暴雨灾害, 2022, 41(4):396-404. |
[38] |
崔林丽, 郭巍, 葛伟强, 等. FY-4A卫星云顶参数精度检验及台风应用研究[J]. 高原气象, 2020, 39(1):196-203.
DOI |
[39] | 甘肃省气象局. 甘肃省气候图集[M]. 北京: 气象出版社, 2017. |
[40] | 唐宏渊. 甘肃庆阳市干旱成因及防治对策[J]. 中国防汛抗旱, 2014, 24(6):4-6 |
[41] | 张洪芬, 李祥科, 焦美玲, 等. 甘肃庆阳2018年暴雨异常偏多特征分析[J]. 气象与环境科学, 2021, 44(3):61-68. |
[42] | 王雪芹, 徐卫红, 向朔育, 等. 基于FY-4卫星资料分析暴雨云系特征[J]. 高原山地气象研究, 2020, 40(1):36-40. |
[43] | 衣娜娜, 苏立娟, 郑旭程, 等. 内蒙古西部地区降水云宏观特征[J]. 干旱气象, 2021, 39(3):406-414. |
[44] | 孙继松, 戴建华, 何力富, 等. 强对流天气预报的基本原理与技术方法:中国强对流天气预报手册[M]. 北京: 气象出版社, 2014:23-24. |
[45] | DOSWELL C A. A review for forecasters on the application of hodographs to forecasting severe thunderstorms[J]. National Weather Digest, 1991, 16(1):2-16 |
[46] |
樊李苗, 俞小鼎. 中国短时强对流天气的若干环境参数特征分析[J]. 高原气象, 2013, 32(1): 156-165.
DOI |
[47] | 高守亭, 周玉淑, 冉令坤. 我国暴雨形成机理及预报方法研究进展[J]. 大气科学, 2018, 42(4):833-846. |
[48] |
REN S L, JIANG J Y, FANG X, et al. FY-4A/GIIRS temperature validation in winter and application to cold wave monitoring[J]. Journal of Meteorological Research, 2022, 36(4):658-676.
DOI URL |
[1] |
WANG Yicheng, LIU Weicheng, SONG Xingyu, ZHANG Wenguang.
Applicability evaluation of satellite-derived precipitation products in the torrential heavy rainfall event in East Gansu in July 2022
[J]. Journal of Arid Meteorology, 2023, 41(6): 997-1007.
|
[2] | TANG Yonglan, XU Guirong, WANG Xiaofang, XIAO Yanjiao, QI Haixia, LENG Liang. Spatio-temporal distribution characteristics of summer hourly heavy rainfall in the Three Gorges Reservoir area from 1992 to 2021 [J]. Journal of Arid Meteorology, 2023, 41(4): 589-598. |
[3] | MA Zhimin, WANG Jiang, LIAN Yu, ZHANG Wancheng, NIU Fabao, YANG Suyu. Analysis on synoptic causes of a severe convective rainstorm in Yunnan [J]. Journal of Arid Meteorology, 2023, 41(4): 629-638. |
[4] | YANG Lijie, CAO Yanchao, LIU Weicheng, XU Lili, ZHANG Hongfen, SUN Zizhu. Research on spatio-temporal distribution characteristics of short-term heavy rainfall and terrain influence in the Loess Plateau arid region of eastern Gansu [J]. Journal of Arid Meteorology, 2022, 40(6): 945-953. |
[5] | LAN Mingcai, ZHOU Li, JIANG Shuai, YIN Yiwen, XU Lin. Causes of a short-term heavy rainfall under the control of the western Pacific subtropical high in Hunan Province [J]. Journal of Arid Meteorology, 2022, 40(4): 656-666. |
[6] | ZHONG Min, XIAO An, XU Guanyu. Study on probability forecast method about graded short-term heavy rain based on CMA-MESO [J]. Journal of Arid Meteorology, 2022, 40(4): 700-709. |
[7] | LI Rong, LIU Xinwei, WEI Dong, DUAN Haixia, DUAN Bolong, LI Jiarui, DI Xiaohong. Refined characteristics of precipitation in Lanzhou based on regional automatic weather stations data [J]. Journal of Arid Meteorology, 2022, 40(1): 55-61. |
[8] | FENG Yao, Ayixianmu·niyazi, Reyila·yunusi. Cause Analysis of an Extreme Heavy Rainstorm Process on July 31 of 2018 in Hami of Xinjiang [J]. Journal of Arid Meteorology, 2021, 39(3): 426-435. |
[9] | QUE Zhiping, LING Ting, WU Fan, CHEN Yunhui. Analysis of Water Vapor Characteristics During a Continuous Heavy Rainfall Process in Jiangxi Province [J]. Journal of Arid Meteorology, 2021, 39(1): 76-86. |
[10] | . Analysis on Causes of Abnormal Rainfall in the Two-Lake Basin from June to July in 2019#br# [J]. Journal of Arid Meteorology, 2020, 38(6): 937-946. |
[11] | DUAN Jingjing, QIAN Yanzhen, JIANG Jiajun, WANG Yi, WU Zeliang. Causes of Rainstorm Enhancement in Northeastern Zhejiang Related with Typhoon Khanun Landing in Guangdong Province [J]. Journal of Arid Meteorology, 2020, 38(5): 737-746. |
[12] | HUANG Qin, HUANG Xin, LI Yali. Evolution Characteristics of Three-dimensional Structure of Wind Field During a Heavy Rainfall in Yulin of Shaanxi [J]. Journal of Arid Meteorology, 2020, 38(5): 747-754. |
[13] | ZENG Yong, YANG Lianmei, ZHANG Yingxin. Numerical Simulation of Mesoscale System During a Rare Torrential Rainstorm Process in Yili of Xinjiang [J]. Journal of Arid Meteorology, 2020, 38(2): 290-300. |
[14] | CHENG Peng, LUO Han, CHEN Peixuan, CAO Yanchao, LI Baozi, CHEN Qi. Statistical Characteristics and Early Warning Indicators of Short-term Heavy Rainfall in the Loess Plateau of Qingyang [J]. Journal of Arid Meteorology, 2020, 38(2): 319-328. |
[15] | JING Yu, CHEN Chuang, WANG Jianpeng, HU Qiyuan. Comparative Analysis of Two Strong Precipitation Periods During an Extended Heavy Rain Process [J]. Journal of Arid Meteorology, 2020, 38(1): 126-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com