Journal of Arid Meteorology ›› 2023, Vol. 41 ›› Issue (6): 997-1007.DOI: 10.11755/j.issn.1006-7639(2023)-06-0997
• Technical Reports • Previous Articles
WANG Yicheng1(), LIU Weicheng1(
), SONG Xingyu1, ZHANG Wenguang2
Received:
2022-08-23
Revised:
2023-09-14
Online:
2023-12-31
Published:
2024-01-03
通讯作者:
刘维成(1984—),男,正高级工程师,主要从事强对流天气监测预警和数值预报等研究。E-mail:作者简介:
王一丞(1993—),男,工程师,主要从事客观预报技术研究等。E-mail:wangyc_climate@163.com。
基金资助:
CLC Number:
WANG Yicheng, LIU Weicheng, SONG Xingyu, ZHANG Wenguang. Applicability evaluation of satellite-derived precipitation products in the torrential heavy rainfall event in East Gansu in July 2022[J]. Journal of Arid Meteorology, 2023, 41(6): 997-1007.
王一丞, 刘维成, 宋兴宇, 张文光. 卫星降水产品在陇东2022年7月特大暴雨事件中的适用性评估[J]. 干旱气象, 2023, 41(6): 997-1007.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2023)-06-0997
降水产品 | 时间 分辨率 | 空间 分辨率 | 主要算法 | 主要数据源 |
---|---|---|---|---|
FY-4A(Li et al., | 1 h | 4 km | 建立红外亮温观测数据与降水率的关系 | FY-4A卫星 |
CMOPRH-RT(Joyce et al., | 30 min | 8 km | 微波反演降水,红外获取云系的运动矢量 | TMI、SSM/I、AMSU-B、AMSR-E、GEO系列卫星 |
IMERG-Early(Hou et al., | 30 min | 0.1° | 微波反演降水,红外反演降水及获取 运动信息 | GMI、DPR、SSM/I、SSMIS、AMSR-E、AMSR2、AMSU-B、MHS、ATMS、GEO系列卫星 |
IMERG-Late(Hou et al., | 30 min | 0.1° | ||
GSMaP-Now (Kubota et al., | 30 min | 0.1° | 微波反演降水,红外获取云系的运动矢量 | GMI、AMSR2、AMSU、SSMIS、GEO系列卫星 |
GSMaP-Gauge (Kubota et al., | 1 h | 0.1° | ||
PERSIANN-Now (Nguyen et al., | 1 h | 0.04° | 建立红外亮温观测数据与降水率的 关系,气候降水曲线订正 | GEO系列卫星 |
PERSIANN-CCS (Nguyen et al., | 1 h | 0.04° | 建立不同种类云的云顶红外亮温与 降水之间的关系 |
Tab.1 Basic information of 8 kinds of satellite-based precipitation products
降水产品 | 时间 分辨率 | 空间 分辨率 | 主要算法 | 主要数据源 |
---|---|---|---|---|
FY-4A(Li et al., | 1 h | 4 km | 建立红外亮温观测数据与降水率的关系 | FY-4A卫星 |
CMOPRH-RT(Joyce et al., | 30 min | 8 km | 微波反演降水,红外获取云系的运动矢量 | TMI、SSM/I、AMSU-B、AMSR-E、GEO系列卫星 |
IMERG-Early(Hou et al., | 30 min | 0.1° | 微波反演降水,红外反演降水及获取 运动信息 | GMI、DPR、SSM/I、SSMIS、AMSR-E、AMSR2、AMSU-B、MHS、ATMS、GEO系列卫星 |
IMERG-Late(Hou et al., | 30 min | 0.1° | ||
GSMaP-Now (Kubota et al., | 30 min | 0.1° | 微波反演降水,红外获取云系的运动矢量 | GMI、AMSR2、AMSU、SSMIS、GEO系列卫星 |
GSMaP-Gauge (Kubota et al., | 1 h | 0.1° | ||
PERSIANN-Now (Nguyen et al., | 1 h | 0.04° | 建立红外亮温观测数据与降水率的 关系,气候降水曲线订正 | GEO系列卫星 |
PERSIANN-CCS (Nguyen et al., | 1 h | 0.04° | 建立不同种类云的云顶红外亮温与 降水之间的关系 |
Fig.2 Spatial distribution of cumulative precipitation from 20:00 July 14 to 20:00 July 15, 2022 observed and from CMPAS as well as 8 kinds of satellite-based precipitation products
降水产品 | SSIM | SIM | SIV | SIP |
---|---|---|---|---|
FY-4A | 0.370 | 0.896 | 0.939 | 0.439 |
CMOPRH-RT | 0.727 | 1.000 | 0.990 | 0.735 |
IMERG-Early | 0.371 | 0.982 | 0.930 | 0.406 |
IMERG-Late | 0.427 | 0.973 | 0.916 | 0.479 |
GSMaP-Now | 0.364 | 0.991 | 0.985 | 0.373 |
GSMaP-Gauge | 0.331 | 0.961 | 0.672 | 0.512 |
PERSIANN-Now | 0.259 | 0.902 | 0.929 | 0.309 |
PERSIANN-CCS | 0.295 | 0.909 | 0.916 | 0.354 |
Tab.2 The structure similarity of total precipitation
降水产品 | SSIM | SIM | SIV | SIP |
---|---|---|---|---|
FY-4A | 0.370 | 0.896 | 0.939 | 0.439 |
CMOPRH-RT | 0.727 | 1.000 | 0.990 | 0.735 |
IMERG-Early | 0.371 | 0.982 | 0.930 | 0.406 |
IMERG-Late | 0.427 | 0.973 | 0.916 | 0.479 |
GSMaP-Now | 0.364 | 0.991 | 0.985 | 0.373 |
GSMaP-Gauge | 0.331 | 0.961 | 0.672 | 0.512 |
PERSIANN-Now | 0.259 | 0.902 | 0.929 | 0.309 |
PERSIANN-CCS | 0.295 | 0.909 | 0.916 | 0.354 |
Fig.4 Hourly average precipitation time series of 8 kinds of precipitation products (a) and at stations with heavy rainstorms and above (b) from 20:00 July 14 to 20:00 July 15, 2022
降水产品 | RB/% | CC | |||
---|---|---|---|---|---|
区域内 平均 | 大暴雨及以上站点平均 | 区域内平均 | 大暴雨及以上站点平均 | ||
FY-4A | 56.7 | -39.7 | 0.89 | 0.61 | |
CMOPRH-RT | 0.01 | -46.7 | 0.99 | 0.82 | |
IMERG-Early | -19.8 | -71.2 | 0.94 | 0.79 | |
IMERG-Late | -23.4 | -70.0 | 0.94 | 0.84 | |
GSMaP-Now | 11.0 | -63.6 | 0.77 | 0.39 | |
GSMaP-Gauge | -27.0 | -76.7 | 0.87 | 0.62 | |
PERSIANN-Now | -39.0 | -79.9 | 0.71 | 0.50 | |
PERSIANN-CCS | -37.9 | -77.5 | 0.84 | 0.70 |
Tab.3 Hourly average precipitation accuracy index of 8 kinds of precipitation products
降水产品 | RB/% | CC | |||
---|---|---|---|---|---|
区域内 平均 | 大暴雨及以上站点平均 | 区域内平均 | 大暴雨及以上站点平均 | ||
FY-4A | 56.7 | -39.7 | 0.89 | 0.61 | |
CMOPRH-RT | 0.01 | -46.7 | 0.99 | 0.82 | |
IMERG-Early | -19.8 | -71.2 | 0.94 | 0.79 | |
IMERG-Late | -23.4 | -70.0 | 0.94 | 0.84 | |
GSMaP-Now | 11.0 | -63.6 | 0.77 | 0.39 | |
GSMaP-Gauge | -27.0 | -76.7 | 0.87 | 0.62 | |
PERSIANN-Now | -39.0 | -79.9 | 0.71 | 0.50 | |
PERSIANN-CCS | -37.9 | -77.5 | 0.84 | 0.70 |
[1] | 柏荷, 明義森, 刘启航, 等, 2022. 基于GPM卫星降雨产品的2001—2019年中国暴雨数据集[J]. 中国科学数据, 7(2): 227-236. |
[2] | 曾岁康, 雍斌, 2019. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 74(7): 1 305-1 318. |
[3] | 陈晓宏, 钟睿达, 王兆礼, 等, 2017. 新一代GPM IMERG卫星遥感降水数据在中国南方地区的精度及水文效用评估[J]. 水利学报, 48(10): 1 147-1 156. |
[4] | 丁明泽, 雍斌, 杨泽康, 2022. 全球降水观测计划多卫星联合反演降水产品的极端降水监测潜力研究[J]. 遥感学报, 26(4): 657-671. |
[5] | 郭广芬, 杜良敏, 肖莺, 等, 2021. 长江流域夏季极端降水时空分布特征[J]. 干旱气象, 39 (2): 235-243. |
[6] | 胡庆芳, 张野, 李伶杰, 等, 2022. GPM近实时反演数据对河南省2021年“7·20”极端暴雨的比较分析[J]. 水科学进展, 33(4): 567-580. |
[7] |
黄楚惠, 牛金龙, 李国平, 等, 2022. 基于西南区域中尺度模式系统预报的陡峭地形过渡带降水订正方法[J]. 干旱气象, 40(2): 317-326.
DOI |
[8] | 黄嘉佑, 2010. 气象统计分析与预报方法[M]. 北京: 气象出版社: 3-18. |
[9] | 井宇, 陈闯, 王建鹏, 等, 2020. 一次大暴雨过程中两个强降水时段差异对比[J]. 干旱气象, 38(1): 126-136. |
[10] |
李伶杰, 胡庆芳, 黄勇, 等, 2018. 近实时卫星降水数据对南京“20170610”极端性强降水过程的监测分析[J]. 高原气象, 37(3): 806-814.
DOI |
[11] | 廖荣伟, 张冬斌, 沈艳, 2015. 6种卫星降水产品在中国区域的精度特征评估[J]. 气象, 41(8): 970-979. |
[12] | 刘俊峰, 陈仁升, 韩春坛, 等, 2010. 多卫星遥感降水数据精度评价[J]. 水科学进展, 21(3): 343-348. |
[13] | 刘少军, 蔡大鑫, 韩静, 等, 2021. 卫星遥感反演降水研究进展简述[J]. 气象科技进展, 11(1): 28-33. |
[14] | 柳龙生, 许映龙, 2020. 孟加拉湾风暴"罗纳"对我国华南地区强降水的影响[J]. 干旱气象, 38(2): 271-279. |
[15] | 龙柯吉, 谷军霞, 师春香, 等, 2020. 多种降水实况融合产品在四川一次强降水过程中的评估[J]. 高原山地气象研究, 40(2): 31-37. |
[16] | 马艳, 郭丽娜, 2020. 气候变化和城市化对青岛降水的影响[J]. 干旱气象, 38(6): 920-928. |
[17] |
毛程燕, 马依依, 孙杭媛, 等, 2022. 不同路径移出型西南涡对中国中东部降水的影响[J]. 干旱气象, 40(3): 386-395.
DOI |
[18] | 孙乐强, 郝振纯, 王加虎, 2014. TMPA卫星降水数据的评估与校正[J]. 水利学报, (10): 1 135-1 146. |
[19] | 孙帅, 师春香, 潘旸, 等, 2020. 中国区域三源融合降水产品的改进效果评估[J]. 水文, 40(6): 10-15. |
[20] |
沙宏娥, 傅朝, 刘维成, 等, 2022. 西北东部半干旱区一次极端特大暴雨的触发和维持机制[J]. 干旱气象, 40(6): 933-944.
DOI |
[21] | 许时光, 牛铮, 沈艳, 等, 2014. CMORPH卫星降水数据在中国区域的误差特征研究[J]. 遥感技术与应用, 29(2): 189-194. |
[22] |
杨文月, 马金辉, 杨文凯, 2014. 基于TRMM卫星的近10a甘肃临夏降水变化特征[J]. 干旱气象, 32(6): 934-939.
DOI |
[23] | 张华龙, 肖柳斯, 陈生, 等, 2020. 基于GPM卫星的广东汛期降水日变化特征与评估[J]. 热带气象学报, 36(3): 335-346. |
[24] |
张君霞, 黄武斌, 杨秀梅, 等, 2022. 陇东半干旱区一次特大暴雨事件的降水极端性分析[J]. 干旱气象, 40(6): 922-932.
DOI |
[25] | AGHAKOUCHAK A, BEHRANGI A, SOROOSHIAN S, et al, 2011. Evaluation of satellite-retrieved extreme precipitation rates across the central United States[J]. Journal of Geophysical Research-Atmospheres, 116(D2), DOI:10.1029/2010JD014741. |
[26] | ANJUM M N, DING Y J, SHANGGUAN D H, et al, 2016. Comparison of two successive versions 6 and 7 of TMPA satellite precipitation products with rain gauge data over Swat Watershed, Hindukush Mountains, Pakistan[J]. Atmospheric Science Letters, 17(4): 270-279. |
[27] | ASONG Z E, RAZAVI S, WHEATER H S, et al, 2017. Evaluation of integrated multi-satellite retrievals for GPM (IMERG) over southern Canada against ground precipitation observations: a preliminary assessment[J]. Journal of Hydrometeorology, 18(4): 1 033-1 050. |
[28] | CHEN F, CROW W T, CIABATTA L, et al, 2021. Enhanced large-scale validation of satellite-based land rainfall products[J]. Journal of Hydrometeorology, 22(2): 245-257. |
[29] | CHEN S, HONG Y, GOURLEY J J, et al, 2013. Evaluation of the successive V6 and V7 TRMM multi-satellite precipitation analysis over the continental United States[J]. Water Resources Research, 49(12): 8 174-8 186. |
[30] | EBERT E E, JANOWIAK J E, KIDD C, 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models[J]. Bulletin of the American Meteorological Society, 88(1): 47-64. |
[31] |
HOU A Y, KAKAR R K, NEECK S, et al, 2014. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 95(5): 701-722.
DOI |
[32] | HYNDMAN R, KOEHLER , 2006. Another look at measures of forecast accuracy[J]. International Journal of Forecasting, 22: 679-688. |
[33] | JOYCE R J, JANOWIAK J E, ARKIN P A, et al, 2004. CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 5(3): 487-503. |
[34] | KIM K, PARK J, BAIK J, et al, 2017. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia[J]. Atmospheric Research, 187: 95-105. |
[35] | KUBOTA T, AONASHI K, USHIO T, et al, 2020. Global satellite mapping of precipitation (GSMaP) products in the GPM Era[M]// LEVIZZANI V, KIDD C, KIRSCHBAUM D B, et al. eds. Satellite Precipitation Measurement. Advances in Global Change Research. Vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-24568-9_20 DOI:10.1007/978-3-030-24568-9_20. |
[36] | LI S, HUANG X, WU W, et al, 2022. Evaluation of CMPAS precipitation products over Sichuan, China[J]. Atmospheric and Oceanic Science Letters, 15(2): 49-55. |
[37] | LI X, YANG Y, MI J, et al, 2021. Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements[J]. Copernicus GmbH, 14(11): 7 007-7 023. |
[38] | LI Y, PANG B, REN M, et al, 2022. Evaluation of performance of three satellite-derived precipitation products in capturing extreme precipitation events over Beijing, China[J]. Remote Sensing, 14(11),DOI: 10.3390/rs14112698. |
[39] | LIU Z, OSTRENGA D, TENG W, et al, 2012. Tropical rainfall measuring mission (TRMM) precipitation data and services for research and applications[J]. Bulletin of the American Meteorological Society, 93(9): 1 317-1 325. |
[40] | MAHMOUD M T, AL-ZAHRANI M A, SHARIF H O, 2018. Assessment of global precipitation measurement satellite products over Saudi Arabia[J]. Journal of Hydrology, 559: 1-12. |
[41] | MEI Y W, ANAGNOSTOU E N, NIKOLOPOULOS E I, et al, 2014. Error Analysis of satellite precipitation products in mountainous basins[J]. Journal of Hydrometeorology, 15(5): 1 778-1 793. |
[42] | NGUYEN P, OMBADI M, GOROOH V A, et al, 2020. PERSIANN dynamic infrared-rain rate (PDIR-Now): a near-real-time, quasi-global satellite precipitation dataset[J]. Journal of Hydrometeorology, 21(12): 2 893-2 906. |
[43] | NGUYEN P, SHEARER E J, TRAN H X, et al, 2019. The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data[J]. Scientific Data, 6(180296), DOI: 10.1038/sdata.2018.296. |
[44] | PENG F C, ZHAO S, CHEN C, et al, 2020. Evaluation and comparison of the precipitation detection ability of multiple satellite products in a typical agriculture area of China[J]. Atmospheric Research, 236, 104814. DOI:10.1016/j.atmosres.2019.104814. |
[45] | SOROOSHIAN S, HSU K L, GAO X, et al, 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall[J]. Bulletin of the American Meteorological Society, 81(9): 2 035-2 046. |
[46] | SUN Q, MIAO C, DUAN Q, et al, 2018. A review of global precipitation data sets: data sources, estimation, and intercomparisons[J]. Reviews of Geophysics, 56(1): 79-107. |
[47] | WIEDERHOLT R, PAUDEL R, KHARE Y, et al, 2019. A multi-indicator spatial similarity approach for evaluating ecological restoration scenarios[J]. Landscape Ecology, 34(11): 2 557-2 574. |
[48] | VILLARINI G, KRAJEWSKI W F, 2007. Evaluation of the research version TMPA three-hourly 0.25 degrees x 0.25 degrees rainfall estimates over Oklahoma[J]. Geophysical Research Letters, 34(5), DOI: 10.1029/2006GL029147. |
[1] | LI Qilin, LIU Chao, ZHU Jun, LIU Fang, KUANG Lan. Correction and evaluation of CLDAS air temperature products based on quasi-symmetric hybrid sliding training method [J]. Journal of Arid Meteorology, 2024, 42(2): 305-314. |
[2] | LI Shuping, QUAN Wenjie, WANG Zheng, CHEN Yizhuo, SU Tao, YAN Pengcheng. Evaluation of the ability of BCC-CSM2-MR global climate model in simulating precipitation and temperature in East Asia [J]. Journal of Arid Meteorology, 2023, 41(6): 984-996. |
[3] | ZHU Li, LYU Xiaoyu, GUO Hao, MENG Xiangchen, TIAN Yunfei. Suitability study of ERA5-Land precipitation product for drought monitoring in the Yellow River Basin [J]. Journal of Arid Meteorology, 2023, 41(5): 677-687. |
[4] | YAO Yanling, WANG Yue, CHEN Quanliang, LIAO Yujing. Temporal and spatial variation characteristics of extreme precipitation in central and eastern Tibetan Plateau [J]. Journal of Arid Meteorology, 2023, 41(5): 714-722. |
[5] | DONG Zhulei, ZHAO Yanli, FENG Xiaojing, LIU Shimeng. Applicability assessment of CLDAS temperature and precipitation products in Inner Mongolia [J]. Journal of Arid Meteorology, 2023, 41(5): 811-819. |
[6] | MA Yang, CUI Yang, ZHANG Wen, LI Xin. Projection of the future temperature changes of Yellow River Basin Ningxia section based on CMIP6 models [J]. Journal of Arid Meteorology, 2023, 41(1): 43-53. |
[7] | YUAN Kai, PANG Jing, LI Wujie, LI Ming. Application evaluation of deep learning models in radar echo nowcasting in Wuhan in flood season of 2021 [J]. Journal of Arid Meteorology, 2023, 41(1): 173-185. |
[8] | MAO Wenqian, XIAO Xia, ZHANG Wenyu, MAO Lixin, WANG Kaiqiang, WANG Qi. Application analysis of wind profile radar detection mode combination [J]. Journal of Arid Meteorology, 2022, 40(6): 1092-1098. |
[9] | GU Tingting, PAN Yaying, ZHANG Jiayi. Correction method of surface solar radiation forecast based on ZJWARMS [J]. Journal of Arid Meteorology, 2022, 40(2): 327-332. |
[10] | HU Zhenju, LI Lu, HUANG Xiaoyu, HE Binwen, YE Rixin. Analysis of mechanism of topographic influence and meso-scale convective characteristics of an extremely severe rainfall affected by typical easterly wave [J]. Journal of Arid Meteorology, 2022, 40(1): 73-83. |
[11] | ZHOU Yaman, SUN Di, ZHAO Yong, LI Anbei, GUO Yulin. Characteristics of Wide-range Extreme Precipitation in Summer and Its Circulation Anomalies in Northern Xinjiang#br# [J]. Journal of Arid Meteorology, 2021, 39(2): 215-224. |
[12] | GUO Guangfen, DU Liangmin, XIAO Ying, GAO Yaqi, WU Yao. Spatio-temporal Distribution Characteristics of Summer Extreme Precipitation in the Yangtze River Basin [J]. Journal of Arid Meteorology, 2021, 39(2): 235-243. |
[13] | LI Nan, XUE Xiaoping. Improvement and Application of Micro-climate Suitability Quantitative Evaluation Model in Heliogreenhouse [J]. Journal of Arid Meteorology, 2020, 38(6): 1009-1015. |
[14] | FENG Xiao, SHI Xiao, LI Xun. Characteristics Comparison of Tropical Cyclone Precipitation in Hainan Island Based on Two Datasets [J]. Journal of Arid Meteorology, 2020, 38(5): 726-736. |
[15] | LIU Linchun, LIU Wei, SUN Xin, LIU Xin, DONG Zhulei, ZHANG Yu. Analysis on Characteristic of Extreme Precipitation in Hetao Area, Inner Mongolia [J]. Journal of Arid Meteorology, 2020, 38(4): 535-542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com