| [1] | 陈笑笑, 黄治勇, 秦鹏程, 2024. 长江中游夏季高温异常的大气环流和海温特征[J]. 干旱气象, 42(4): 553-562. DOI
 | 
																													
																						| [2] | 关惠戈, 余锦华, 2014. 中国东部气温异常型与海表温度异常模关系的诊断[J]. 气象科学, 34(6): 656-665. | 
																													
																						| [3] | 韩帅, 师春香, 姜志伟, 等, 2018. CMA高分辨率陆面数据同化系统(HRCLDAS-V1.0)研发及进展[J]. 气象科技进展, 8(1): 102-108. | 
																													
																						| [4] | 郝立生, 马宁, 何丽烨, 2022. 2022年长江中下游夏季异常干旱高温事件之环流异常特征[J]. 干旱气象, 40(5): 721-732. DOI
 | 
																													
																						| [5] | 胡景高, 陶丽, 周兵, 2010. 南亚高压活动特征及其与我国东部夏季降水的关系[J]. 高原气象, 29(1): 128-136. | 
																													
																						| [6] | 贾子康, 郑志海, 封国林, 2020. 中国南方地区盛夏高温类型及其对应的大尺度环流和海温异常[J]. 气象学报, 78(6): 928-944. | 
																													
																						| [7] | 蒋圆圆, 李忠贤, 倪东鸿, 等, 2024. 夏季北大西洋海温异常与长江流域极端高温日数年际变化关系的年代际减弱[J]. 大气科学学报, 47(6): 881-891. | 
																													
																						| [8] | 林纾, 李红英, 黄鹏程, 等, 2022. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 40(5): 748-763. DOI
 | 
																													
																						| [9] | 罗伯良, 李易芝, 2014. 2013年夏季湖南严重高温干旱及其大气环流异常[J]. 干旱气象, 32(4): 593-598. DOI
 | 
																													
																						| [10] | 马浩, 刘昌杰, 钱奇峰, 等, 2020. 2018年5月浙江省极端高温气候特征及环流背景[J]. 干旱气象, 38(6): 909-919. | 
																													
																						| [11] | 秦大河, 陈振林, 罗勇, 等, 2007. 气候变化科学的最新认知[J]. 气候变化研究进展, 3(2): 64-73. | 
																													
																						| [12] | 孙博, 王会军, 黄艳艳, 等, 2023. 2022年夏季中国高温干旱气候特征及成因探讨[J]. 大气科学学报, 46(1): 1-8. | 
																													
																						| [13] | 孙建奇, 2014. 2013年北大西洋破纪录海温与我国江淮-江南地区极端高温的关系[J]. 科学通报, 59(27): 2 714-2 719. | 
																													
																						| [14] | 孙蕊, 邓彪, 王顺久, 等, 2023. 2022年夏季四川省区域性高温和干旱过程监测评估[J]. 高原山地气象研究, 43(2):72-80. | 
																													
																						| [15] | 王慧美, 刘舸, 彭京备, 等, 2021. 热带大西洋海温异常季节内演变对中国江南地区夏季持续性高温事件影响的初步研究[J]. 大气科学, 45(2): 300-314. | 
																													
																						| [16] | 王羱, 桑悦洋, 张立凤, 2015. 2013年夏季浙江省高温干旱环流异常分析[J]. 气象科学, 35(2): 140-149. | 
																													
																						| [17] | 杨涵洧, 封国林, 2016. 2013年盛夏中国持续性高温事件诊断分析[J]. 高原气象, 35(2): 484-494. DOI
 | 
																													
																						| [18] | 尹泽疆, 魏维, 杨崧, 2023. 北大西洋涛动和英国-鄂霍茨克海走廊型遥相关对2022年盛夏长江中下游极端高温的影响[J]. 大气科学学报, 46(3): 345-353. | 
																													
																						| [19] | 袁媛, 丁婷, 高辉, 等, 2018. 我国南方盛夏气温主模态特征及其与海温异常的联系[J]. 大气科学, 42(6): 1 245-1 262. | 
																													
																						| [20] | 岳岩裕, 吴翠红, 周悦, 等, 2018. 不同环流背景下极端高温天气特征和预报服务要点[J]. 干旱气象, 36(6): 1 027-1 034. | 
																													
																						| [21] | 周秋雪, 冯良敏, 陈朝平, 等, 2024. 2022年四川省复杂地形下持续性极端高温特征与模式误差分析[J]. 高原山地气象研究, 44(3):102-108. | 
																													
																						| [22] | 赵军平, 刘汉华, 周春雨, 等, 2016. 2013年浙江夏季异常高温及环流特征分析[J]. 气象科技进展, 6(1): 26-30. | 
																													
																						| [23] | BASTOS A, GOUVEIA C M, TRIGO R M, et al, 2014. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe[J]. Biogeosciences, 11(13): 3 421-3 435. | 
																													
																						| [24] | CHEN R D, LU R Y, 2015. Comparisons of the circulation anomalies associated with extreme heat in different regions of Eastern China[J]. Journal of Climate, 28(14): 5 830-5 844. | 
																													
																						| [25] | CHEN S R, FAN Y, ZHOU B T, 2025. Decadal variation of late summer extreme temperatures in Eastern China and the influence from the North Atlantic[J]. Atmospheric Research, 322(10): 108134. DOI: 10.1016/j.ztmosres.2025. 108134. | 
																													
																						| [26] | DENG K Q, YANG S, TING M F, et al, 2019. Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability[J]. Journal of Climate, 32(12): 3 761-3 775. | 
																													
																						| [27] | FU Z H, ZHOU W, XIE S P, et al, 2024. Dynamic pathway linking Pakistan flooding to East Asian heatwaves[J]. Science Advances, 10(17): eadk9250. DOI: 10.1126/sciadv.adk9250. | 
																													
																						| [28] | GU S H, HUANG C R, BAI L, et al, 2016. Heat-related illness in China, summer of 2013[J]. International Journal of Biometeorology, 60(1): 131-137. DOI    
																																																	PMID
 | 
																													
																						| [29] | HABEEB D, VARGO J, STONE B, 2015. Rising heat wave trends in large US cities[J]. Natural Hazards, 76(3): 1 651-1 665. | 
																													
																						| [30] | HE C, ZHOU T J, ZHANG L X, et al, 2023. Extremely hot East Asia and flooding western South Asia in the summer of 2022 tied to reversed flow over Tibetan Plateau[J]. Climate Dynamics, 61(5): 2 103-2 119. | 
																													
																						| [31] | HERSBACH H, BELL B, BERRISFORD P, et al. 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1 999-2 049. | 
																													
																						| [32] | HU Y P, ZHOU B T, WANG H J, et al, 2024. Record-breaking summer-autumn drought in Southern China in 2022: Roles of tropical sea surface temperature and Eurasian warming[J]. Science China Earth Sciences, 67(2): 420-431. | 
																													
																						| [33] | HUANG B Y, THORNE P W, BANZON V F, et al, 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons[J]. Journal of Climate, 30(20): 8 179-8 205. | 
																													
																						| [34] | IPCC, 2021. Climate Change 2021: The Physical Science Basis[R]. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press: 2 392. | 
																													
																						| [35] | JIANG W P, HUANG G, HUANG P, et al. 2019. Northwest Pacific anticyclonic anomalies during post-El Niño summers determined by the pace of El Niño decay[J]. Journal of Climate, 32(12): 3 487-3 503. | 
																													
																						| [36] | KALNAY E, KANAMITSU M, KISTLER R, et al, 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 77(3): 437-471. | 
																													
																						| [37] | NING L, LIU J, WANG B, 2017. How does the South Asian High influence extreme precipitation over Eastern China[J]. Journal of Geophysical Research: Atmospheres, 122(8): 4 281-4 298. | 
																													
																						| [38] | SUN J Q, 2012. Possible impact of the summer north Atlantic oscillation on extreme hot events in China[J]. Atmospheric and Oceanic Science Letters, 5(3): 231-234. | 
																													
																						| [39] | SUN Y, ZHANG X B, ZWIERS F W, et al, 2014. Rapid increase in the risk of extreme summer heat in Eastern China[J]. Nature Climate Change, 4: 1 082-1 085. | 
																													
																						| [40] | TANG S K, QIAO S B, WANG B, et al, 2023. Linkages of unprecedented 2022 Yangtze River Valley heatwaves to Pakistan flood and triple-dip La Niña[J]. NPJ Climate Atmospheric Science, 6: 44. DOI: 10.1038/s41612-023-00386-3. | 
																													
																						| [41] | WANG Z Q, LUO H L, YANG S, 2023. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective[J]. Environmental Research Letters, 18(2): 024023. DOI: 10.1088/1748-9326/acb3e5. | 
																													
																						| [42] | WEI W, ZHANG R H, WEN M, et al, 2019. Dynamic effect of the South Asian high on the interannual zonal extension of the western North Pacific subtropical high[J]. International Journal of Climatology, 39(14): 5 367-5 379. | 
																													
																						| [43] | XU S Q, FANG Y H, LIN Y T, et al, 2023. Enhanced impact of autumn north tropical Atlantic sea surface temperature anomalies on subsequent winter snowfall in Northeast China after 2001[J]. Journal of Climate, 36(2): 663-675. | 
																													
																						| [44] | YIN Z C, ZHOU B T, DUAN M K, et al, 2023. Climate extremes become increasingly fierce in China[J]. The Innovation, 4(2): 100406. DOI: 10.1016/j.xinn.2023.100406. | 
																													
																						| [45] | ZHANG D P, HUANG Y Y, ZHOU B T, et al, 2021. Is there interdecadal variation in the South Asian high?[J]. Journal of Climate, 34(20): 8 089-8 103. | 
																													
																						| [46] | ZHANG D Q, CHEN L J, YUAN Y, 2023. Why was the heat wave in the Yangtze River valley abnormally intensified in late summer 2022?[J]. Environmental Research Letters, 18(3): 034014. DOI: 10.1088/1748-9326/acba30. | 
																													
																						| [47] | ZHU B Y, SUN B, WANG H J, 2020. Dominant modes of interannual variability of extreme high-temperature events in Eastern China during summer and associated mechanisms[J]. International Journal of Climatology, 40(2): 841-857. |