[1] |
陈洁, 刘玉洁, 潘韬, 等, 2019. 1961—2010年中国降水时空变化特征及对地表干湿状况影响[J]. 自然资源学报, 34(11): 2 440-2 453.
|
[2] |
褚荣浩, 李萌, 谢鹏飞, 等, 2021. 安徽省近20年地表蒸散和干旱变化特征及其影响因素分析[J]. 生态环境学报, 30(6): 1 229-1 239.
|
[3] |
邓兴耀, 刘洋, 刘志辉, 等, 2017. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 37(9): 2 994-3 008.
|
[4] |
李召旭, 王建国, 黄伟杰, 等, 2023. 从水旱灾害风险普查谈广东地区抗旱减灾能力建设[J]. 中国防汛抗旱, 33(5): 42-46.
|
[5] |
马梓策, 孙鹏, 张强, 等, 2022. 基于MODIS数据的华北地区遥感干旱监测研究[J]. 地理科学, 42(1): 152-162.
DOI
|
[6] |
石欣荣, 佘敦先, 夏军, 等, 2022. 1960—2019年三北地区潜在蒸散发的变化及归因[J]. 武汉大学学报(工学版), 55(10): 973-984.
|
[7] |
史丽, 张柳红, 伍红雨, 2021. 1994—2018年广东主要气象灾害特征分析[J]. 广东气象, 43(2): 54-57.
|
[8] |
王敏, 尹义星, 陈晓旸, 等, 2022. 基于SPEI的近百年天津地区气象干旱时空演变特征[J]. 干旱气象, 40(1): 11-21.
DOI
|
[9] |
王莹, 张舒, 徐永清, 等, 2023. 近50 a黑龙江省5—9月气象干旱及大气环流异常特征[J]. 干旱气象, 41(4): 540-549.
DOI
|
[10] |
吴天晓, 李宝富, 郭浩, 等, 2023. 基于优选遥感干旱指数的华北平原干旱时空变化特征分析[J]. 生态学报, 43(4): 1 621-1 634.
|
[11] |
武荣盛, 侯琼, 杨玉辉, 等, 2021. 多时间尺度气象干旱指数在内蒙古典型草原的适应性研究[J]. 干旱气象, 39(2): 177-184.
|
[12] |
许敏, 江鹏, 2020. 基于MODIS和ERA-Interim的安徽省地表蒸散发及其受植被覆盖度影响研究[J]. 水资源与水工程学报, 31(2): 253-260.
|
[13] |
余慧倩, 张强, 孙鹏, 等, 2019. 干旱强度及发生时间对华北平原五省冬小麦产量影响[J]. 地理学报, 74(1): 87-102.
DOI
|
[14] |
余兴湛, 蒲义良, 康伯乾, 2022. 基于SPEI的广东省近50 a干旱时空特征[J]. 干旱气象, 40(6): 1 051-1 058.
|
[15] |
周惜荫, 李谢辉, 2021. 1978—2017年西南地区干湿时空变化特征[J]. 干旱气象, 39(3): 357-365.
|
[16] |
IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of the Intergovernmental Panel on Climate Change[M]. Cambridge and New York: Cambridge University Press:582.
|
[17] |
JACKSON R D, IDSO S B, REGINATO R J, et al, 1981. Canopy temperature as a crop water stress indicator[J]. Water Resources Research, 17(4): 1 133-1 138.
|
[18] |
KENDALL M G, 1957. Rank correlation methods[J]. Biometrika, 44(1/2): 298-298.
|
[19] |
LI M, CHU R H, SHEN S H, et al, 2018. Quantifying climatic impact on reference evapotranspiration trends in the Huai River Basin of eastern China[J]. Water, 2018, 10(2): 144-167.
|
[20] |
MA Z C, SUN P, ZHANG Q, et al, 2021. Characterization and evaluation of MODIS-derived crop water stress index (CWSI) for monitoring drought from 2001 to 2017 over inner Mongolia[J]. Sustainability, 13(2): 916-932.
|
[21] |
MANN H B, 1945. Nonparametric tests against trend[J]. Econometrica, 13(3): 245-259.
|
[22] |
MILICH L, WEISS E, 2000. GAC NDVI interannual coefficient of variation (CoV) images: Ground truth sampling of the Sahel along north-south transects[J]. International Journal of Remote Sensing, 21(2): 235-260.
|
[23] |
MU Q Z, HEINSCH F A, ZHAO M S, et al, 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 111(4): 519-536.
|
[24] |
MU Q Z, ZHAO M S, RUNNING S W, 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 115(8): 1 781-1 800.
|
[25] |
SALINGER M J, STIGTER C J, DAS H P, 2000. Agrometeorological adaptation strategies to increasing climate variability and climate change[J]. Agricultural and Forest Meteorology, 103(1/2): 167-184.
|
[26] |
SEN P K, 1968. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 63(324): 1 379-1 389.
|
[27] |
SHIRU M S, SHAHID S, CHUNG E S, et al, 2019. Changing characteristics of meteorological droughts in Nigeria during 1901-2010[J]. Atmospheric Research, 223: 60-73.
|
[28] |
THEIL H, 1992. A rank-invariant method of linear and polynomial regression analysis[M]. Advanced studies in theoretical and applied econometrics. Dordrecht: Springer Netherlands: 345-381.
|
[29] |
VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I, 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 23(7): 1 696-1 718.
|
[30] |
WANG Y, LIU Y B, JIN J X, 2018. Contrast effects of vegetation cover change on evapotranspiration during a revegetation period in the Poyang Lake basin, China[J]. Forests, 9(4): 217-231.
|
[31] |
WEST H, QUINN N, HORSWELL M, 2019. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities[J]. Remote Sensing of Environment, 232: 111291. DOI: 10.1016/J.RSE.2019.111291.
|