干旱气象 ›› 2024, Vol. 42 ›› Issue (2): 293-304.DOI: 10.11755/j.issn.1006-7639(2024)-02-0293

• 新气象数据检验与订证 • 上一篇    下一篇

两种降水客观统计方法对ECMWF集合平均降水预报的订正研究

焦洋(), 郑丽娜(), 张永婧, 苏轶   

  1. 山东省济南市气象局,山东 济南 250102
  • 收稿日期:2023-05-08 修回日期:2023-12-05 出版日期:2024-04-30 发布日期:2024-05-12
  • 通讯作者: 郑丽娜(1971—),女,山东东营人,博士,正高级工程师,从事天气预报和气候变化研究。E-mail: dongyingzln@163.com
  • 作者简介:焦洋(1989—),女,山东济南人,硕士,工程师,从事预报方法和极端天气研究。E-mail: jiaoyang0621@foxmail.com
  • 基金资助:
    中国气象局气象软科学重点项目(2023ZDIANXM03);山东省自然科学基金项目(ZR2021MD012);山东省气象局青年基金项目(2020SDQN11);中国气象局决策服务专项“特大城市内涝风险预估技术研究”共同资助

Correction of ECMWF ensemble average precipitation forecast using two objective precipitation statistical methods

JIAO Yang(), ZHENG Lina(), ZHANG Yongjing, SU Yi   

  1. Ji’nan Meteorological Bureau of Shandong Province, Ji’nan 250102, China
  • Received:2023-05-08 Revised:2023-12-05 Online:2024-04-30 Published:2024-05-12

摘要:

提升降水量级预报精度,有助于优化灾害预警与决策支持。选取2018年1月1日至2021年1月山东省逐12 h降水观测数据和欧洲中期天气预报中心(the European Centre for Medium-Range Weather Forecasting,ECMWF)的集合预报集合平均(Ensemble Prediction Ensemble Mean,EPEM)结果进行72 h内逐12 h降水量级预报统计订正,然后对比ECMWF集合平均降水预报插值的原始预报(EC_EPEM)、基于EC_EPEM的输出统计(Model Output Statistics,MOS)预报(EC_EPEM_MOS)、利用最优TS(Threat Score)评分订正(Optimal Threat Score,OTS)预报(EC_EPEM_OTS)的效果。结果表明:EC_EPEM_MOS在较小量级上表现最优,但在大量级上订正效果稍差,甚至略低于EC_EPEM;EC_EPEM_OTS仅在0.1、10 mm量级上低于EC_EPEM_MOS,其他量级均为最优,尤其在较大量级上订正效果更明显。在50、100 mm大量级上,EC_EPEM_OTS在12~72 h时效订正效果均最优,这是由于EC_EPEM_OTS在稍大量级上提高订正系数使得大量级降水漏报率减小,同时对大量级降水使用较小订正系数也减小了空报率。在较小量级降水中短期预报时效除了山东中部山区外EC_EPEM_MOS表现最佳,山区EC_EPEM_OTS最佳;中等以上量级、尤其较大量级降水,山东大部分地区EC_EPEM_OTS表现最佳。EC_EPEM_MOS订正预报有效地减小了EC_EPEM的空报问题。EC_EPEM_OTS的订正效果最佳,在大范围强降雨过程中与实况降雨分布更为接近,降水总体分布把握较好。

关键词: 客观统计方法, 降水预报, 最优TS评分订正, 山东

Abstract:

Improving the accuracy of precipitation level forecast is helpful to optimize disaster warning and decision support. Based on the precipitation observation data in the time interval of 12 hours from January 2018 to January 2021 in Shandong Province and the ensemble prediction ensemble mean results of the European Centre for Medium-Range Weather Forecasting, the precipitation level forecast for 12 hours interval within 72 hours are statistically revised. Then, the effects of the original forecast of ECMWF ensemble mean precipitation forecast interpolation (EC_EPEM), the Model Output Statistics (MOS) prediction based on the EC_EPEM (EC_EPEM_MOS) and the Optimal Threat Score (OTS) prediction (EC_EPEM_OTS) are compared, and the improving effects of two statistical correction methods on precipitation level with the time interval of 12 hours prediction of the ECMWF ensemble forecast are discussed. The results indicate that the EC_EPEM_MOS has the best performance on the relatively smaller precipitation grades, while its correction effect is relatively poor for higher grades, even slightly lower than the EC_EPEM. The correction effect of the EC_EPEM_OTS is only lower than the EC_EPEM_MOS for 0.1 and 10.0 mm precipitation grades, and for the other grades it is optimal, especially for the larger grades, its correction effect is more obvious. The EC_EPEM_OTS has the best correction effect from 12 to 72 hours for both 50 mm and 100 mm precipitation grades, because the EC_EPEM_OTS increases the correction coefficient for a slightly larger grade, resulting in a low false report rate for large grades. At the same time, using a smaller correction coefficient for large precipitation also reduces the false report rate. The EC_EPEM_MOS is best in most parts of Shandong Province except for the mountains area in the middle parts for short prediction period and smaller precipitation, while the EC_EPEM_OTS is the best in the mountains area. For above medium grade, especially large precipitation, the EC_EPEM_OTS is the best in most areas of Shandong Province. The EC_EPEM_MOS correction prediction effectively reduces the problem of empty report of the EC_EPEM. The correction effect of the EC_EPEM_OTS is the best, and the rainfall area is closer to the observations in the processes of large-scale heavy rainfalls, and the overall distribution of precipitation is better grasped.

Key words: objective statistical method, precipitation forecast, optimal threat score correction, Shandong Province

中图分类号: