干旱气象 ›› 2022, Vol. 40 ›› Issue (3): 406-414.DOI: 10.11755/j.issn.1006-7639(2022)-03-0406
焦洋1,2(), 张永婧1,2, 尹承美1,2, 褚颖佳1,2
收稿日期:
2020-12-04
修回日期:
2021-01-04
出版日期:
2022-06-30
发布日期:
2022-06-28
作者简介:
焦洋(1989—),女,工程师,从事天气预报和极端天气研究. E-mail: jiaoyang0621@foxmail.com。
基金资助:
JIAO Yang1,2(), ZHANG Yongjing1,2, YIN Chengmei1,2, CHU Yingjia1,2
Received:
2020-12-04
Revised:
2021-01-04
Online:
2022-06-30
Published:
2022-06-28
摘要:
利用1979—2018年山东省120个国家气象站逐日降水观测数据、欧洲中期天气预报中心ERA-Interim逐月再分析资料以及美国国家环境预报中心和大气研究中心逐6 h再分析资料,分析春季青藏高原大气热源强度变化对山东夏季暴雨的影响。结果表明:近40 a山东大部地区暴雨日数呈增加趋势,鲁西南、鲁西北中东部增加趋势显著。春季、夏季高原均为东亚大气热源较强区域,春季高原大气热源强中心区的强度与山东夏季暴雨指数呈显著正相关。当春季高原大气热源增强时,夏季南亚高压加强、东扩,200 hPa南亚高压易呈中部型,500 hPa中国东北地区易有冷涡生成南下,日本东部西太平洋副热带高压加强北抬,山东处于冷暖气流交汇区,同时明显有自南向北的水汽输送至山东地区,低层辐合、高层辐散的环流配置促使该地区上升气流增强,有利于降水产生。春季高原大气热源强度与夏季南亚高压强度、丝绸之路遥相关分别呈显著正、负相关,大气热源增强下的环流形势有利于山东地区出现强降雨。
中图分类号:
焦洋, 张永婧, 尹承美, 褚颖佳. 山东夏季暴雨对青藏高原东南部及邻近区域春季大气热源变化的响应[J]. 干旱气象, 2022, 40(3): 406-414.
JIAO Yang, ZHANG Yongjing, YIN Chengmei, CHU Yingjia. Response of summer rainstorm in Shandong Province to change of spring atmospheric heat sources in southeastern Tibet Plateau and its adjacent areas[J]. Journal of Arid Meteorology, 2022, 40(3): 406-414.
图1 1979—2018年山东夏季暴雨日数的标准化场EOF第一模态空间分布(a)及其时间系数序列(b)以及暴雨日数变化趋势分布[c,单位:d·(10 a)-1]和距平序列(d)(实心的三角、倒三角通过α=0.05的显著性检验)
Fig.1 Spatial distribution of the first mode of standardized rainstorms days field decomposed by EOF (a) and its time coefficient series (b), and the tendency distribution (c, Unit: d·(10 a)-1) and anomaly series (d)of rainstorms days in summer from 1979 to 2018 in Shandong Province (The solid triangles and inverted triangles pass the significance test at 0.05 level)
图2 1979—2018年春季(a)、夏季(b)平均大气热源分布(单位:W·m-2) (黑色线为海拔3000 m以上青藏高原边界,红色方框为大气热源强中心区。下同)
Fig.2 The distribution of mean atmospheric heat source in spring (a) and summer (b) (Unit: W·m-2) (the black line for the Tibetan Plateau boundary with altitude more than 3000 m, and the red box for the strong center of atmospheric heat source. the same as below)
图3 1979—2018年山东夏季暴雨指数与春季(a)、夏季(b)大气热源强度相关系数分布以及春季高原大气热源强度指数时间序列(c)及其与山东夏季暴雨日数相关系数分布(d) (打点区通过α=0.1的显著性检验。下同;实心三角从小到大分别通过α=0.1、0.05的显著性检验)
Fig.3 The correlation coefficients distribution between summer rainstorm index in Shandong Province and intensity of atmospheric heat source in spring (a) and summer (b), and the time series of atmospheric heat source intensity index over the Tibetan Plateau in spring (c) and its correlation coefficients distribution with summer rainstorm days in Shandong Province (d) from 1979 to 2018 (The dotted areas pass the significance test at 0.1 level. the same as below; the solid triangles from small to large pass the significances tests at 0.1 and 0.05 level, respectively)
图4 春季高原大气热源强度指数回归的夏季200 hPa位势高度场(a,单位:gpm)和500 hPa位势高度场(填色区,单位:gpm)及整层水汽通量场(矢量,单位:g·cm-1·s-1)(b)
Fig.4 The 200 hPa geopotential height field (a, Unit: gpm), 500 hPa geopotential height (color shaded areas, Unit: gpm)and integrated water vapor flux (vectors, Unit: g·cm-1·s-1) field (b) in summer regressed by spring atmospheric heat source intensity index over the Tibetan Plateau
图5 春季高原大气热源强度指数回归的同期沿30°N(a)和夏季35°N—40°N范围(b)相对涡度(填色区,单位:10-5 s-1)及风场(矢量,单位:m·s-1)的纬向垂直剖面 (黑色区为青藏高原,黑色箭头通过α=0.1的显著性检验。下同)
Fig.5 The zonal vertical sections of relative vorticity (color shaded areas, Unit: 10-5 s-1) and wind field (vectors, Unit: m·s-1) along 30°N in the same period (a) and over 35°N-40°N area in summer (b) regressed by atmospheric heat source intensity index over the Tibetan Plateau in spring (The black area is the Tibetan Plateau, and black arrows pass the significance test at 0.1 level. the same as below)
图6 夏季200 hPa平均经向风距平场EOF分解的第一模态空间分布(a,填色区)及其标准化时间系数序列(b) (黑色等值线表示风速大于等于20 m·s-1的西风急流气候平均位置)
Fig.6 The spatial distribution of the first mode of 200 hPa mean meridional wind anomaly field in summer decomposed by EOF (a, color shaded areas) and its standardized time coefficients series (b) (the black contours for the climatic average location of westerly jet with wind speed more than or equal to 20 m·s-1)
图7 夏季南亚高压强度指数回归的同期110°E—125°E范围平均相对涡度(填色区,单位:10-5 s-1)和风场(矢量,单位:m·s-1)的经向垂直剖面
Fig.7 The meridional vertical section of average relative vorticity (color shaded areas, Unit: 10-5 s-1) and wind field (vectors, Unit: m·s-1) over 110°E-125°E in the same period regressed by SAH_int in summer
图8 夏季丝绸之路遥相关指数回归的同期低通滤波的200 hPa平均相对涡度(填色区,单位:10-5 s-1)和TN通量(矢量,单位:m2·s-2)
Fig.8 The lowpass filtered mean relative vorticity (color shaded areas, Unit: 10-5 s-1) and TN flux (vectors, Unit: m2·s-2) at 200 hPa in the same period regressed by Silk Road teleconnection correlation index in summer
[1] |
ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18(7): 1096-1108.
DOI URL |
[2] | 中国气象局. 气象局关于印发《中国气象局关于加强生态文明建设气象保障服务工作的意见》的通知(气发[2017]79号)[J]. 中华人民共和国国务院公报, 2018(18):60-68. |
[3] | 时晓曚, 王志轩, 孙即霖, 等. 山东夏季极端降水时空分布及环流特征分析[J]. 海洋湖沼通报, 2020(3):45-51. |
[4] | 王文波, 李晓利, 赵华, 等. “海棠”残留低压引发鲁中东部暴雨中尺度特征分析[J]. 气象与环境科学, 2021, 44(2):80-86. |
[5] | 梅婵娟, 张灿, 李宏江. 2011年“7·25”山东乳山特大暴雨成因分析[J]. 气象与环境科学, 2016, 39(3):82-89. |
[6] | 黄昌兴, 江敦双, 李欣, 等. 影响山东半岛的两次台风暴雨对比分析[J]. 气象与环境科学, 2015, 38(3):70-77. |
[7] |
DUAN A M, WU G X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 2005, 24(7):793-807.
DOI URL |
[8] | 段安民, 肖志祥, 吴国雄, 等. 青藏高原冬春积雪影响亚洲夏季风的研究进展[J]. 气象与环境科学, 2014, 37(3):94-101. |
[9] |
HU J, DUAN A M. Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon[J]. Climate Dynamics, 2015, 45(9): 2697-2711.
DOI URL |
[10] |
WANG Z Q, DUAN A M, WU G X. Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: case studies using the WRF model[J]. Climate Dynamics, 2014, 42(11): 2885-2898.
DOI URL |
[11] |
WU T W, QIAN Z A. The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: an observational investigation[J]. Journal of Climate, 2003, 16(12): 2038-2051.
DOI URL |
[12] |
ZHAO P, ZHOU Z J, LIU J P. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: an observational investigation[J]. Journal of Climate, 2007, 20(15): 3942-3955.
DOI URL |
[13] | 黄荣辉. 夏季青藏高原上空热源异常对北半球大气环流异常的作用[J]. 气象学报, 1985, 43(2):208-220. |
[14] | 姚秀萍, 闫丽朱, 张硕. 大气非绝热加热作用的研究进展与展望[J]. 气象, 2019, 45(1):1-16. |
[15] | 周胜男, 罗亚丽, 汪会. 青藏高原、 中国东部及北美副热带地区夏季降水系统发生频次的TRMM资料分析[J]. 气象, 2015, 41(1):1-16. |
[16] | 李国平, 卢会国, 黄楚惠, 等. 青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J]. 大气科学, 2016, 40(1):131-141. |
[17] |
DUAN A M, WANG M R, LEI Y H, et al. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. Journal of Climate, 2013, 26(1): 261-275.
DOI URL |
[18] |
WANG B, BAO Q, HOSKINS B J, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 2008, 35(14): L14702. DOI: 10.1029/2008GL034330.
DOI |
[19] | 娄德君, 王波, 王冀, 等. 青藏高原5月大气热源与黑龙江省盛夏降水的关系[J]. 气象与环境学报, 2020, 36(2):34-40. |
[20] |
MASON R B, ANDERSON C E. The development and decay of the 100-mb. summertime anticyclone over southern Asia[J]. Monthly Weather Review, 1963, 91(1): 3-12.
DOI URL |
[21] |
WEI W, ZHANG R H, WEN M, et al. Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall[J]. Journal of Climate, 2015, 28(7): 2623-2634.
DOI URL |
[22] |
ZHANG P F, LIU Y M, HE B. Impact of East Asian summer monsoon heating on the interannual variation of the South Asian high[J]. Journal of Climate, 2016, 29(1):159-173.
DOI URL |
[23] |
ZHAO P, ZHANG X D, LI Y F, et al. Remotely modulated tropical-North Pacific ocean-atmosphere interactions by the South Asian high[J]. Atmospheric Research, 2009, 94(1): 45-60.
DOI URL |
[24] |
HAN Y Z, MA W Q, YANG Y X, et al. Impacts of the Silk Road pattern on the interdecadal variations of the atmospheric heat source over the Tibetan Plateau[J]. Atmospheric Research, 2021, 260, 105696. DOI: 10.1016/j.atmosres.2021.105696.
DOI URL |
[25] |
WU G X, LIU Y M, WANG T M, et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 2007, 8(4):770-789.
DOI URL |
[26] |
LUO H, YANAI M. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: heat and moisture budgets[J]. Monthly Weather Review, 1984, 112(5):966-989.
DOI URL |
[27] | YANAI M, LI C F, SONG Z S. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan, 1992, 79(1):319-351. |
[28] |
DUAN A M, WANG M R, XIAO Z X. Uncertainties in quantitatively estimating the atmospheric heat source over the Tibetan Plateau[J]. Atmospheric and Oceanic Science Letters, 2014, 7(1):28-33.
DOI URL |
[29] | 施宁, 布和朝鲁, 纪立人, 等. 中高纬Rossby波活动对盛夏东亚/太平洋事件中期演变过程的影响[J]. 大气科学, 2009, 33(5):1087-1100. |
[30] |
TAKAYA K, NAKAMURA H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow[J]. Geophysical Research Letters, 1997, 24(23):2985-2988.
DOI URL |
[31] |
TAKAYA K, NAKAMURA H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. Journal of the Atmospheric Sciences, 2001, 58(6):608-627.
DOI URL |
[32] | 赵平, 陈隆勋. 35年来青藏高原大气热源气候特征及其与中国降水的关系[J]. 中国科学:地球科学, 2001, 31(4):327-332. |
[33] | 余鹤书, 晁淑懿. 南亚高压中部型与我国雨带分布[J]. 高原气象, 1985, 4(4):339-346. |
[34] | 张琼, 钱永甫, 张学洪. 南亚高压的年际和年代际变化[J]. 大气科学, 2000, 24(1):67-78. |
[35] |
KRISHNAMURTI T N. Summer monsoon experiment—a review[J]. Monthly Weather Review, 1985, 113(9):1590-1626.
DOI URL |
[36] |
WANG L, XU P, CHEN W, et al. Interdecadal variations of the Silk Road pattern[J]. Journal of Climate, 2017, 30(24):9915-9932.
DOI URL |
[37] |
HE S, LIU Y, WANG H. Connection between the Silk Road pattern in July and the following January temperature over East Asia[J]. Journal of Meteorological Research, 2017, 31(2):378-388.
DOI URL |
[38] | 田晨光. 丝绸之路遥相关年代际变化特征及其与东亚夏季风的关系[D]. 上海: 华东师范大学, 2018. |
[1] | 徐玮平, 孟祥新, 顾伟宗, 伯忠凯. 山东春季极端低温与前冬北大西洋海温的关系[J]. 干旱气象, 2022, 40(2): 202-211. |
[2] | 马敏劲, 陈玥, 康国强, 赵侦竹, 黄万龙, 谈昌蓉, 丁凡. 青藏高原夏季边界层再分析资料的偏差分析及订正[J]. 干旱气象, 2022, 40(1): 95-107. |
[3] | 杨振鑫, 祁萍, 孙磊, 崔小平, 赵月兰. 青藏高原东北侧短时强降水阈值确定及特征分析[J]. 干旱气象, 2021, 39(4): 563-568. |
[4] | 张海宏, 石明明, 吴昊, 祁栋林, 权晨. 基于ERA-Interim资料的青海省空中云水资源评估[J]. 干旱气象, 2021, 39(4): 569-576. |
[5] | 张亚春, 马耀明, 马伟强, 王宾宾, 王玉阳, . 青藏高原不同下垫面蒸散量及其与气象因子的相关性[J]. 干旱气象, 2021, 39(3): 366-373. |
[6] | 郑然, 刘嘉慧敏, 王春学, 李栋梁, 唐红玉, 刘博. 华西南区秋雨异常及其对青藏高原冬季大气冷源的响应[J]. 干旱气象, 2021, 39(2): 225-234. |
[7] | 王健疆, 马浩, 余丽萍, 龚理卿, 汪晨. 2019年浙江省秋旱大气环流特征分析[J]. 干旱气象, 2021, 39(1): 1-7. |
[8] | 王溪雯, 张飞民, 王芝兰, 杨凯, 王澄海. 青藏高原西部一次高原涡生成的数值模拟研究[J]. 干旱气象, 2021, 39(1): 54-64. |
[9] | 马有绚, 李万志, 王丽霞, 白文蓉, 王紫文. 基于SPI的青海省春季干旱时空演变特征及环流诊断[J]. 干旱气象, 2020, 38(03): 362-370. |
[10] | 刘晓冉, 胡祖恒, 李永华, 唐红玉. 重庆地区冬季冷暖变化及其异常成因分析[J]. 干旱气象, 2020, 38(03): 404-410. |
[11] | 罗连升, 徐敏, 何冬燕. 2000年以来淮河流域夏季降水年代际特征及大气环流异常[J]. 干旱气象, 2019, 37(4): 540-549. |
[12] | 蔡新玲, 李瑜, 李茜, 胡淑兰. 1961—2016年陕西秋淋气候变化特征及其与大气环流和海温的关系[J]. 干旱气象, 2019, 37(2): 226-232. |
[13] | 孙夏, 范广洲, 张永莉, 赖欣. 夏季青藏高原不同层次土壤湿度时空变化特征[J]. 干旱气象, 2019, 37(2): 252-261. |
[14] | 安迪,李栋梁,王自强,武艳,吕翔,杨绚. 基于SPEI的黄淮地区夏季干旱时空异常特征及成因[J]. 干旱气象, 2018, 36(4): 544-553. |
[15] | 邓明珊,孟宪红,马英赛,安颖颖. 基于GLDAS产品的青藏高原土壤湿度特征分析[J]. 干旱气象, 2018, 36(4): 595-602. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: