干旱气象 ›› 2025, Vol. 43 ›› Issue (4): 607-615.DOI: 10.11755/j.issn.1006-7639-2025-04-0607

• 论文 • 上一篇    下一篇

内蒙古东南部一次伴冻雨的极端暴雪天气特征

赵睿峰(), 张桂莲(), 黄晓璐, 霍志丽, 江靖   

  1. 内蒙古自治区气象台,内蒙古 呼和浩特 010051
  • 收稿日期:2025-01-16 修回日期:2025-03-06 出版日期:2025-08-31 发布日期:2025-09-08
  • 通讯作者: 张桂莲(1966—),女,内蒙古呼和浩特人,正高级工程师,主要从事各种灾害性天气预报研究。E-mail: 2561750566@qq.com
  • 作者简介:赵睿峰(1994—),男,内蒙古包头人,工程师,主要从事灾害性天气预报研究。E-mail: rfzhao@163.com
  • 基金资助:
    内蒙古自治区自然科学基金项目(2023QN04008);内蒙古自治区自然科学基金项目(2024LHMS04022);内蒙古自治区自然科学基金项目(2025QN04043);内蒙古自治区自然科学基金项目(2025MS04044);中国气象局复盘总结专项项目(FPZJ2025-020);中国气象局复盘总结专项项目(FPZJ2025-021)

Characteristics of an extreme snowstorm with freezing rain in southeastern Inner Mongolia

ZHAO Ruifeng(), ZHANG Guilian(), HUANG Xiaolu, HUO Zhili, JIANG Jing   

  1. Inner Mongolia Autonomous Region Meteorological Observatory, Hohhot 010051, China
  • Received:2025-01-16 Revised:2025-03-06 Online:2025-08-31 Published:2025-09-08

摘要:

伴冻雨的极端暴雪在内蒙古较少出现,研究此类天气对预报预警和灾害防御有重要意义。利用常规气象观测资料、欧洲中期天气预报中心ERA5再分析资料和内蒙古通辽多普勒天气雷达资料,针对2023年11月5—6日内蒙古东南部一次伴冻雨的极端暴雪天气过程,深入分析其发生的环境条件和成因。 结果表明:500 hPa高空冷涡、700 hPa暖式切变线、850 hPa偏东风急流以及北上的地面江淮气旋是此次过程的主要影响系统。冻雨发生时,垂直方向呈现“冷、暖、冷”的层结结构,925~875 hPa存在融化层,雷达基本反射率图中出现零度层亮带;过冷却水粒子和冰晶经零度层亮带进入融化层,之后降落到地面,这一过程符合融化型冻雨的特征。中层西南暖湿气流在低层偏东风形成的冷垫上爬升,产生强烈的动力锋生作用,为极端降雪提供了强劲的动力抬升条件,而强上升运动的存在和长时间维持,是导致极端暴雪天气发生的重要因素。暴雪区低层比湿最大达4~6 g·kg-1,且低层强水汽辐合维持时间长,为极端暴雪提供了充足的水汽供应。综合来看,此次内蒙古东南部伴随冻雨的极端暴雪天气,是高低空系统相互作用、动力锋生触发的垂直抬升以及持续水汽输送共同作用的结果。

关键词: 极端暴雪, 冻雨, 逆温层, 冷垫

Abstract:

Extreme snowstorms with freezing rain are rare in Inner Mongolia, and studying such weather is of great significance for forecasting and disaster prevention. Based on the conventional meteorological observation data, ERA5 reanalysis data of the European Centre for Medium-Range Weather Forecasts and Doppler radar data of Tongliao, Inner Mongolia, the environmental conditions and causes of an extreme snowstorm with freezing rain in the southeast of Inner Mongolia on November 5-6 in 2023 were analyzed. The main conclusions are as follows: The 500 hPa upper-air cold vortex, the 700 hPa warm shear line, the 850 hPa easterly jet stream and the northward-moving surface Jianghuai cyclone were the main influencing systems of this process. When the freezing rain occurred, the vertical direction showed a “cold-warm-cold” stratification structure. There was a melting layer at 925-875 hPa, and a bright band of the 0 ℃ layer was observed on the radar base reflectivity imagery. The supercooled water particles and ice crystals entered the melting layer through the 0 ℃ layer bright band, and then fell to the ground, which conformed to the characteristics of melting freezing rain. The mid-level southwest jet climbed over the lower-level easterly cold cushion, generating strong dynamic frontogenesis, which provided robust dynamic lifting conditions for the extreme snowstorm. The existence and long-term maintenance of strong upward motion were important conditions for the extreme snowstorm. The maximum specific humidity in the lower layer over the blizzard area reached 4-6 g·kg-1, and long-lasting strong water vapor convergence in the lower layer provided sufficient moisture for the extreme snowfall. In summary, the extreme snowstorm with freezing rain in the southeast of Inner Mongolia was the result of the interaction between the upper and low level systems, the vertical uplifting mechanism triggered by dynamic frontogenesis, and the continuous water vapor transport.

Key words: extreme snowstorm, freezing rain, inversion layer, cold cushion

中图分类号: