干旱气象 ›› 2025, Vol. 43 ›› Issue (2): 207-220.DOI: 10.11755/j.issn.1006-7639-2025-02-0207
收稿日期:
2024-06-27
修回日期:
2024-09-18
出版日期:
2025-04-30
发布日期:
2025-05-13
通讯作者:
杨泽粟(1987—),男,博士,主要从事陆-气相互作用研究。E-mail:cqhcyzx@126.com。
作者简介:
何杭(1999—),男,硕士研究生,主要从事陆-气相互作用研究。E-mail:hehangabc@163.com。
基金资助:
HE Hang(), YANG Zesu(
), WU Yuyan
Received:
2024-06-27
Revised:
2024-09-18
Online:
2025-04-30
Published:
2025-05-13
摘要:
气候过渡区作为“陆-气耦合”热点地区,当前研究多集中于该区域陆-气耦合时空分布及水热条件的影响,缺乏对多因子协同作用及不同生态系统耦合度差异的研究。本文基于站点观测资料,聚焦陆面水、热、生因子与地表通量的耦合关系,对比分析不同生态系统之间单因子和多因子陆-气耦合度差异,评估各陆面因子对耦合度的贡献。结果表明,单因子耦合中,稀疏植被的潜热与叶面积指数耦合强度最强,农田的潜热与土壤温度耦合强度最强;草地、森林和农田的感热与土壤温度耦合最强。多因子耦合度明显优于单因子,多因子与潜热的耦合度在森林和稀疏植被有明显提升,与感热的耦合在稀疏植被明显增强。各因子对地表通量的贡献中,草地感热和潜热分别由热力和生态因子主导;稀疏植被潜热由水分、生态因子共同主导,感热由热力因子主导;农田和森林的潜热和感热由热力因子主导。干旱条件下,水分和生态因子对多数生态系统中潜热和感热的贡献增大。
中图分类号:
何杭, 杨泽粟, 邬钰嫣. 气候过渡区不同生态系统多陆面因子-大气耦合特征[J]. 干旱气象, 2025, 43(2): 207-220.
HE Hang, YANG Zesu, WU Yuyan. Characterization of multi-land surface factor-atmosphere coupling in different ecosystems in the climate transition zones[J]. Journal of Arid Meteorology, 2025, 43(2): 207-220.
站点名称 | 地理位置 | 气候过渡区 | 生态系统特征 | 年平均 降水量/mm | 地表能量平衡 闭合状况 |
---|---|---|---|---|---|
Metolius Mature Ponderosa Pine | 121.6°W, 44.4°N | 地中海气候-温带大陆性气候 | ENF(常绿针叶林) | 523 | 0.83 |
Vaira Ranch-Ione | 121.0°W, 38.4°N | 地中海气候-温带草原气候 | GRA(草地) | 559 | 0.76 |
Gebesee | 10.9°E, 51.1°N | 温带海洋性气候-温带大陆性气候 | CRO(农田) | 470 | 0.65 |
Santa Rita Mesquite | 110.9°W, 31.8°N | 热带沙漠气候-热带草原气候 | WSA(稀疏植被) | 380 | 0.70 |
表1 站点地理信息和气候特征
Tab.1 Presentation of geographic information and climatic characteristics of four sites
站点名称 | 地理位置 | 气候过渡区 | 生态系统特征 | 年平均 降水量/mm | 地表能量平衡 闭合状况 |
---|---|---|---|---|---|
Metolius Mature Ponderosa Pine | 121.6°W, 44.4°N | 地中海气候-温带大陆性气候 | ENF(常绿针叶林) | 523 | 0.83 |
Vaira Ranch-Ione | 121.0°W, 38.4°N | 地中海气候-温带草原气候 | GRA(草地) | 559 | 0.76 |
Gebesee | 10.9°E, 51.1°N | 温带海洋性气候-温带大陆性气候 | CRO(农田) | 470 | 0.65 |
Santa Rita Mesquite | 110.9°W, 31.8°N | 热带沙漠气候-热带草原气候 | WSA(稀疏植被) | 380 | 0.70 |
图1 2004—2013年4个生态系统土壤湿度的月变化(a)和年际变化(b) (误差棒表示正负1个标准差,下同)
Fig.1 The monthly (a) and yearly (b) variation of SWC for four ecosystems from 2004 to 2013 (Error bars indicate plus or minus one standard deviation,the same as below)
图6 不同生态系统潜热通量(LH)与土壤湿度、土壤温度、LAI的散点图
Fig.6 Scatter plots of latent heat flux versus soil moisture, soil temperature and leaf area index for different ecosystems
图7 不同生态系统感热通量与土壤湿度、土壤温度、LAI的散点图
Fig.7 Scatter plots of sensible heat flux versus soil moisture, soil temperature and leaf area index for different ecosystems
图8 不同生态系统潜热通量和感热通量的复相关系数(R)和标准化回归系数 (B1、B2、B3分别表示土壤湿度、土壤温度和LAI对通量的贡献)
Fig.8 Complex correlation coefficients (R) and standard regression coefficients of latent heat flux and sensible heat flux for different ecosystems (B1, B2 and B3 denote the contributions of soil moisture, soil temperature, and LAI to the fluxes, respectively)
图9 平均态不同生态系统土壤湿度、土壤温度、LAI对潜热通量和感热通量的贡献(单位:%) (越靠近左角代表水分因子的贡献越大;越靠近上角代表热力因子的贡献越大;越靠近右角代表生态因子的贡献越大)
Fig.9 Contributions of soil moisture, soil temperature and LAI to latent heat flux and sensible heat flux in different ecosystems under the mean state (Unit: %) (The closer to the left corner represents the larger contribution of the moisture factor, the closer to the upper corner represents the larger contribution of the thermal factor, and the closer to the right corner represents the larger contribution of the ecological factor)
图10 平均态和干旱年不同生态系统土壤湿度、土壤温度、LAI对潜热通量(a)和感热通量(b)的贡献(单位:%) (六边形代表平均态,五角星代表干旱年,箭头表示平均态到干旱年的偏移情况)
Fig.10 Contributions of soil moisture, soil temperature and LAI to latent heat flux (a) and sensible heat flux (b) in different ecosystems under the mean state and in dry year (Unit: %) (The hexagon represents the mean state, the pentagram represents the dry year, and the arrows indicate the shift from the mean state to the dry year)
[1] | 戴永久, 2020. 陆面过程模式研发中的问题[J]. 大气科学学报, 43(1):33-38. |
[2] |
邸燕君, 曾鼎文, 张文波, 等, 2022. 亚洲东部和南部土壤干湿状态对陆气耦合的影响分析[J]. 干旱气象, 40(3):345-353.
DOI |
[3] | 龚婷婷, 雷慧闽, 焦阳, 等, 2015. 黄土高原农牧交错带稀疏自然植被生态系统的地表能量特征[J]. 应用生态学报, 26(6):1625-1 633. |
[4] | 黄建平, 季明霞, 刘玉芝, 等, 2013. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 9(1):9-14. |
[5] | 刘世荣, 温远光, 蔡道雄, 等, 2014. 气候变化对森林的影响与多尺度适应性管理研究进展[J]. 广西科学, 21(5):419-435. |
[6] | 廖志朗, 欧虹伶, 欧阳家萌, 等, 2024. 地表蒸散发遥感产品在不同生态系统的评估[J]. 气象研究与应用, 45(2):57-62. |
[7] | 马耀明, 胡泽勇, 王宾宾, 等, 2021. 青藏高原多圈层地气相互作用过程研究进展和回顾[J]. 高原气象, 40(6):1241-1 262. |
[8] | 万志红, 李荣平, 周广胜, 等, 2016. 锦州地区玉米农田生态系统水汽通量变化特征及其调控机制[J]. 气象与环境学报, 32(6):155-159. |
[9] | 徐聪, 朱高峰, 朱永泰, 等, 2022. SiB2模型对不同生态系统的能量通量模拟性能研究[J]. 兰州大学学报:自然科学版, 58(5):631-640. |
[10] |
岳平, 张强, 赵文, 等, 2015. 黄土高原半干旱草地近地层湍流温湿特征及总体输送系数[J]. 高原气象, 34(1):21-29.
DOI |
[11] | 岳天祥, 范泽孟, 2014. 典型陆地生态系统对气候变化响应的定量研究[J]. 科学通报, 59(3):217-231. |
[12] | 杨扬, 杨启东, 王芝兰, 等, 2021. 中国区域陆气耦合强度的时空分布特征[J]. 干旱气象, 39(3):374-385. |
[13] | 曾剑, 张强, 王春玲, 2016. 东亚夏季风边缘摆动区陆面能量时空分布规律及其与气候环境的关系[J]. 气象学报, 74(6):876-888. |
[14] | 张强, 王蓉, 岳平, 等, 2017a. 复杂条件陆-气相互作用研究领域有关科学问题探讨[J]. 气象学报, 75(1):39-56. |
[15] | 张强, 王胜, 张杰, 等, 2009. 干旱区陆面过程和大气边界层研究进展[J]. 地球科学进展, 24(11):1185-1 194. |
[16] | 张强, 岳平, 张良, 等, 2019. 夏季风过渡区的陆-气相互作用:述评与展望[J]. 气象学报, 77(4):758-773. |
[17] | 张强, 张红丽, 张良, 等, 2017b. 论我国夏季风影响过渡区及其陆-气相互作用问题[J]. 地球科学进展, 32(10):1009-1 019. |
[18] |
张良, 张强, 王润元, 等, 2023. 我国夏季风过渡区陆-气相互作用研究的新进展[J]. 干旱气象, 41(4):519-530.
DOI |
[19] | 张志强, 徐中民, 程国栋, 2001. 生态系统服务与自然资本价值评估[J]. 生态学报, 21(11):1918-1 926. |
[20] | 朱建华, 侯振宏, 张治军, 等, 2007. 气候变化与森林生态系统:影响、脆弱性与适应性[J]. 林业科学, 2007(11):138-145. |
[21] | ABDOLGHAFOORIAN A, FARHADI L, 2019. Estimation of surface turbulent fluxes from land surface moisture and temperature via a variational data assimilation framework[J]. Water Resources Research, 55(6): 4 648-4 667. DOI: 10.1029/2018WR024580. |
[22] |
ALLAN R P, BARLOW M, BYRNE M P, et al, 2020. Advances in understanding large-scale responses of the water cycle to climate change[J]. Annals of the New York Academy of Sciences, 1472(1): 49-75. DOI: 10.1111/nyas. 14337.
PMID |
[23] | ANDRESEN C G, LAWRENCE D M, WILSON C J, et al, 2020. Soil moisture and hydrology projections of the permafrost region-a model intercomparison[J]. The Cryosphere, 14(2): 445-459. DOI: 10.5194/tc-14-445-2020. |
[24] | BAKER J C A, CASTILHO DE SOUZA D, KUBOTA P Y, et al, 2021. An assessment of land-atmosphere interactions over south America using satellites, reanalysis, and two global climate models[J]. Journal of Hydrometeorology, 22(4): 905-922. DOI: 10.1175/JHM-D-20-0132.1. |
[25] | BENTAMY A, KATSAROS K B, MESTAS-NUÑEZ A M, et al, 2003. Satellite estimates of wind speed and latent heat flux over the global oceans[J]. Journal of Climate, 16(4): 637-656. |
[26] | BERG A, SHEFFIELD J, 2018. Climate change and drought: The soil moisture perspective[J]. Current Climate Change Reports, 4(2): 180-191. DOI: 10.1007/s40641-018-0095-0. |
[27] | BRUBAKER K L, ENTEKHABI D, 1996. Analysis of feedback mechanisms in land-atmosphere interaction[J]. Water Resources Research, 32(5): 1 343-1 357. DOI: 10.1029/96WR00005. |
[28] | BUTTERWORTH B J, DESAI A R, TOWNSEND P A, et al, 2021. Connecting land-atmosphere interactions to surface heterogeneity in CHEESEHEAD19[J]. Bulletin of the American Meteorological Society, 102(2): E421-E445. DOI: 10.1175/BAMS-D-19-0346.1. |
[29] | COOK B I, MANKIN J S, ANCHUKAITIS K J, 2018. Climate change and drought: From past to future[J]. Current Climate Change Reports, 4(2): 164-179. DOI: 10.1007/S40641-018-0093-2. |
[30] | DICKINSON R E, 1995. Land-atmosphere interaction[J]. Reviews of Geophysics, 33(S2): 917-922. DOI: 10.1029/95RG00284. |
[31] | DIRMEYER P A, BALSAMO G, BLYTH E M, et al, 2021. Land-atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018[J]. AGU Advances, 2(2): e2020AV000283. DOI: 10.1029/2020AV000283. |
[32] | DIRMEYER P A, WANG Z Y, MBUH M J, et al, 2014. Intensified land surface control on boundary layer growth in a changing climate[J]. Geophysical Research Letters, 41(4): 1 290-1 294. DOI: 10.1002/2013GL058826. |
[33] | FAIRBAIRN L, REZANEZHAD F, GHARASOO M, et al, 2023. Relationship between soil CO2fluxes and soil moisture: Anaerobic sources explain fluxes at high water content[J]. Geoderma, 434: 116493. DOI: 10.1016/j.geoderma.2023.116493. |
[34] | FISCHER E M, SENEVIRATNE S I, LÜTHI D, et al, 2007. Contribution of land‐atmosphere coupling to recent European summer heat waves[J]. Geophysical Research Letters, 34(6): 2006GL029068. DOI: 10.1029/2006GL029068. |
[35] | GAO B, FARNSWORTH J, SMITS K M, 2020. Evaporation from undulating soil surfaces under turbulent airflow through numerical and experimental approaches[J]. Vadose Zone Journal, 19(1): e20038. DOI: 10.1002/vzj2.20038. |
[36] | GUO Z C, DIRMEYER P A, 2013. Interannual variability of land-atmosphere coupling strength[J]. Journal of Hydrometeorology, 14(5): 1 636-1 646. DOI: 10.1175/JHM-D-12-0171.1. |
[37] | HE X L, XU T R, BATENI S M, et al, 2021. Estimation of turbulent heat fluxes and gross primary productivity by assimilating land surface temperature and leaf area index[J]. Water Resources Research, 57(11): e2020WR028224. DOI: 10.1029/2020WR028224. |
[38] | HIRANO D, FUKAMACHI Y, WATANABE E, et al, 2016. A wind-driven, hybrid latent and sensible heat coastal polynya off Barrow, Alaska[J]. Journal of Geophysical Research: Oceans, 121(1): 980-997. DOI: 10.1002/2015 JC011318. |
[39] | HOEK VAN DIJKE A J, MALLICK K, SCHLERF M, et al, 2020. Examining the link between vegetation leaf area and land-atmosphere exchange of water, energy, and carbon fluxes using FLUXNET data[J]. Biogeosciences, 17(17): 4 443-4 457. DOI: 10.5194/bg-17-4443-2020. |
[40] | HSU H, DIRMEYER P A, 2022. Deconstructing the soil moisture-latent heat flux relationship: The range of coupling regimes experienced and the presence of nonlinearity within the sensitive regime[J]. Journal of Hydrometeorology, 23(7): 1 041-1 057. DOI: 10.1175/JHM-D-21-0224.1. |
[41] | HUMPHREY V, BERG A, CIAIS P, et al, 2021. Soil moisture-atmosphere feedback dominates land carbon uptake variability[J]. Nature, 592(7852): 65-69. DOI: 10.1038/s41586-021-03325-5. |
[42] | ISHOLA K A, MILLS G, FEALY R M, et al, 2020. Improving a land surface scheme for estimating sensible and latent heat fluxes above grasslands with contrasting soil moisture zones[J]. Agricultural and Forest Meteorology, 294: 108151. DOI: 10.1016/j.agrformet.2020.108151. |
[43] | JAEGER E B, STÖCKLI R, SENEVIRATNE S I, 2009. Analysis of planetary boundary layer fluxes and land-atmosphere coupling in the regional climate model CLM[J]. Journal of Geophysical Research: Atmospheres, 114(D17): 2008JD 011658. DOI: 10.1029/2008JD011658. |
[44] | JUNG M, KOIRALA S, WEBER U, et al, 2019. The FLUXCOM ensemble of global land-atmosphere energy fluxes[J]. Scientific Data, 6(1): 74. DOI: 10.1038/s41597-019-0076-8. |
[45] | KANE D L, HINKEL K M, GOERING D J, et al, 2001. Non-conductive heat transfer associated with frozen soils[J]. Global and Planetary Change, 29(3/4): 275-292. DOI: 10.1016/S0921-8181(01)00095-9. |
[46] | KANG S, KIM S, OH S, et al, 2000. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature[J]. Forest Ecology and Management, 136(1/3): 173-184. DOI: 10.1016/S0378-1127(99)00290-X. |
[47] | KASHYAP B, KUMAR R, 2021. Sensing methodologies in agriculture for soil moisture and nutrient monitoring[J]. IEEE Access, 9: 14 095-14 121. DOI: 10.1109/ACCESS. 2021.3052478. |
[48] | KOSTER R D, DIRMEYER P A, GUO Z C, et al, 2004. Regions of strong coupling between soil moisture and precipitation[J]. Science, 305(5687): 1 138-1 140. DOI: 10.1126/science.1100217. |
[49] | KOSTER R D, SUD Y C, GUO Z C, et al, 2006. GLACE: The global land-atmosphere coupling experiment. Part I: Overview[J]. Journal of Hydrometeorology, 7(4): 590-610. DOI: 10.1175/JHM510.1. |
[50] | KUMAR S V, MOCKO D M, WANG S G, et al, 2019. Assimilation of remotely sensed leaf area index into the Noah-MP land surface model: Impacts on water and carbon fluxes and states over the continental United States[J]. Journal of Hydrometeorology, 20(7): 1 359-1 377. DOI: 10.1175/JHM-D-18-0237.1. |
[51] | LEI F N, CROW W T, HOLMES T R H, et al, 2018. Global investigation of soil moisture and latent heat flux coupling strength[J]. Water Resources Research, 54(10): 8 196-8 215. DOI: 10.1029/2018WR023469. |
[52] | LIOU Y A, LE M S, CHIEN H, 2019. Normalized difference latent heat index for remote sensing of land surface energy fluxes[J]. IEEE Transactions on Geoscience and Remote Sensing, 57(3): 1 423-1 433. DOI: 10.1109/TGRS.2018. 2866555. |
[53] |
LIU Y, LU M, YANG H, et al, 2020. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts[J]. National Science Review, 7(3): 534-552. DOI: 10.1093/nsr/nwaa011.
PMID |
[54] | MA Y M, HU Z Y, XIE Z P, et al, 2020. A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J]. Earth System Science Data, 12(4): 2 937-2 957. DOI: 10.5194/essd-12-2937-2020. |
[55] | MAERTENS M, DE LANNOY G J M, APERS S, et al, 2021. Land surface modeling over the dry Chaco: The impact of model structures, and soil, vegetation and land cover parameters[J]. Hydrology and Earth System Sciences, 25(7): 4 099-4 125. DOI: 10.5194/hess-25-4099-2021. |
[56] | MU M Y, DE KAUWE M G, UKKOLA A M, et al, 2021. Evaluating a land surface model at a water-limited site: Implications for land surface contributions to droughts and heatwaves[J]. Hydrology and Earth System Sciences, 25(1): 447-471. DOI: 10.5194/hess-25-447-2021. |
[57] | NIETO H, KUSTAS W P, ALFIERI J G, et al, 2019. Impact of different within-canopy wind attenuation formulations on modelling sensible heat flux using TSEB[J]. Irrigation Science, 37(3): 315-331. DOI: 10.1007/s00271-018-0611-y. |
[58] | QIU J X, CROW W T, NEARING G S, 2016. The impact of vertical measurement depth on the information content of soil moisture for latent heat flux estimation[J]. Journal of Hydrometeorology, 17(9): 2 419-2 430. DOI: 10.1175/JHM-D-16-0044.1. |
[59] | RUOSTEENOJA K, MARKKANEN T, VENÄLÄINEN A, et al, 2018. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century[J]. Climate Dynamics, 50(3): 1 177-1 192. DOI: 10.1007/s00382-017-3671-4. |
[60] | SADEGHI M, EBTEHAJ A, CROW W T, et al, 2020. Global estimates of land surface water fluxes from SMOS and SMAP satellite soil moisture data[J]. Journal of Hydrometeorology, 21(2): 241-253. DOI: 10.1175/JHM-D-19-0150.1. |
[61] | SANTANELLO J A JR, LAWSTON P, KUMAR S, et al, 2019. Understanding the impacts of soil moisture initial conditions on NWP in the context of land-atmosphere coupling[J]. Journal of Hydrometeorology, 20(5): 793-819. DOI: 10.1175/JHM-D-18-0186.1. |
[62] | SANTANELLO J A JR, PETERS-LIDARD C D, KUMAR S V, et al, 2009. A modeling and observational framework for diagnosing local land-atmosphere coupling on diurnal time scales[J]. Journal of Hydrometeorology, 10(3): 577-599. DOI: 10.1175/2009JHM1066.1. |
[63] | SCHMIDT-WALTER P, TROTSIUK V, MEUSBURGER K, et al, 2020. Advancing simulations of water fluxes, soil moisture and drought stress by using the LWF-Brook90 hydrological model in R[J]. Agricultural and Forest Meteorology, 291: 108023. DOI: 10.1016/j.agrformet. 2020. 108023. |
[64] | SCHUMACHER D L, KEUNE J, VAN HEERWAARDEN C C, et al, 2019. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought[J]. Nature Geoscience, 12(9): 712-717. DOI: 10.1038/s41561-019-0431-6. |
[65] | SENEVIRATNE S I, LÜTHI D, LITSCHI M, et al, 2006. Land-atmosphere coupling and climate change in Europe[J]. Nature, 443(7108): 205-209. DOI: 10.1038/nature05095. |
[66] | SEO E, LEE M I, JEONG J H, et al, 2019. Impact of soil moisture initialization on boreal summer subseasonal forecasts: Mid-latitude surface air temperature and heat wave events[J]. Climate Dynamics, 52: 1 695-1 709. DOI: 10.1007/s00382-018-4221-4. |
[67] | SHRESTHA P, KURTZ W, VOGEL G, et al, 2018. Connection between root zone soil moisture and surface energy flux partitioning using modeling, observations, and data assimilation for a temperate grassland site in Germany[J]. Journal of Geophysical Research: Biogeosciences, 123(9): 2 839-2 862. DOI: 10.1029/2016JG003753. |
[68] | TANG Q, XIE S, ZHANG Y, et al, 2018. Heterogeneity in warm-season land-atmosphere coupling over the US Southern Great Plains[J]. Journal of Geophysical Research: Atmospheres, 123(15): 7 867-7 882. DOI: 10.1029/2018 JD028463. |
[69] | VALAYAMKUNNATH P, SRIDHAR V, ZHAO W G, et al, 2018. Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate[J]. Agricultural and Forest Meteorology, 248: 22-47. DOI: 10.1016/j.agrformet.2017. 08.025. |
[70] | VICENTE-SERRANO S M, MCVICAR T R, MIRALLES D G, et al, 2020. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change[J]. Wiley Interdisciplinary Reviews: Climate Change, 11(2): e632. DOI: 10.1002/wcc.632. |
[71] | WANG C, FU B J, ZHANG L, et al, 2019. Soil moisture-plant interactions: An ecohydrological review[J]. Journal of Soils and Sediments, 19(1): 1-9. DOI: 10.1007/s11368-018-2167-0. |
[72] | XU T R, HE X L, BATENI S M, et al, 2019. Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites[J]. Remote Sensing of Environment, 221: 444-461. DOI: 10.1016/j.rse.2018.11.023. |
[73] | YANG L B, SUN G Q, ZHI L, et al, 2018. Negative soil moisture-precipitation feedback in dry and wet regions[J]. Scientific Reports, 8(1): 4026. DOI: 10.1038/s41598-018-22394-7. |
[74] | YAO Y J, ZHANG Y H, LIU Q, et al, 2019. Evaluation of a satellite-derived model parameterized by three soil moisture constraints to estimate terrestrial latent heat flux in the Heihe River basin of Northwest China[J]. Science of the Total Environment, 695: 133787. DOI: 10.1016/j.scitotenv.2019.133787. |
[75] | ZHANG J Y, WANG W C, WEI J F, 2008. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation[J]. Journal of Geophysical Research: Atmospheres, 113(D17): 2008JD009807. DOI: 10.1029/2008JD009807. |
[76] | ZHANG Q, ZENG J, YUE P, et al, 2020. On the land-atmosphere interaction in the summer monsoon transition zone in East Asia[J]. Theoretical and Applied Climatology, 141(3): 1 165-1 180. DOI: 10.1007/s00704-020-03239-8 |
[77] | ZHANG L, SHA S, ZHANG Q, et al, 2023. Investigating the coupling relationship between soil moisture and evaporative fraction over China’s transitional climate zone[J]. Hydrology, 10(12): 221. DOI: 10.3390/hydrology10120221. |
[78] | ZHOU S, PARK WILLIAMS A, BERG A M, et al, 2019. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences, 116(38): 18 848-18 853. DOI: 10.1073/pnas.190495511. |
[79] | ZHU L Y, JIANG C S, PANTHI S, et al, 2021. Impact of high precipitation and temperature events on the distribution of emerging contaminants in surface water in the Mid-Atlantic, United States[J]. Science of the Total Environment, 755: 142552. DOI: 10.1016/j.scitotenv.2020.142552. |
[1] | 黄珊, 杨扬, 王含嘉, 杨启东. 中国西南地区地表感热和潜热通量时空变化特征[J]. 干旱气象, 2020, 38(4): 601-611. |
[2] | 齐斐斐, 买买提艾力·买买提依明, 霍文, 何清, 刘永强. 塔克拉玛干沙漠腹地地表辐射和能量平衡及小气候特征[J]. 干旱气象, 2020, 38(1): 32-39. |
[3] | 严凯琳, 俞 淼, 郭 黎, 廖 宏. 江淮梅雨异常与东亚地区地表感热通量的关系[J]. 干旱气象, 2019, 37(5): 771-780. |
[4] | 李丹华1,2,陈世强2,卢国阳1,刘丽伟1. 玛曲积雪过程对近地层气象要素影响的数值模拟[J]. 干旱气象, 2018, 36(3): 415-. |
[5] | 王 健,仝纪龙,肖贻青,吴肖燕,张文煜. 东亚典型干旱、半干旱区夏季感热通量的年代际变化特征[J]. 干旱气象, 2018, 36(2): 203-211. |
[6] | 崔洋, 常倬林, 余莲, 王澄海. 青藏高原春季地表非绝热加热异常对东亚夏季风强度的影响[J]. 干旱气象, 2017, 35(1): 1-11. |
[7] | 药静宇,王国印,黄建平,闭建荣. 黄土高原半干旱区净碳交换量的特征分析[J]. 干旱气象, 2016, 34(1): 88-95. |
[8] | 吕 萍. 西北地区一次沙尘暴过程的地表热通量特征[J]. J4, 2009, 27(3): 250-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: